Chronic itch can be extremely devastating and, in many cases, difficult to treat. One challenge in treating itch disorders is the limited understanding of the multitude of chemical players involved in the communication of itch sensation from the peripheral to the central nervous system. Neuropeptides are intercellular signaling molecules that are known to be involved in the transmission of itch signals from primary afferent neurons, which detect itch in the skin, to higher-order circuits in the spinal cord and brain. To investigate the role of neuropeptides in transmitting itch signals, we generated two mouse models of chronic itch-Acetone-Ether-Water (AEW, dry skin) and calcipotriol (MC903, atopic dermatitis). For peptide identification and quantitation, we analyzed the peptide content of dorsal root ganglia (DRG) and dorsal horn (DH) tissues from chronically itchy mice using liquid chromatography coupled to tandem mass spectrometry. De novo-assisted database searching facilitated the identification and quantitation of 335 peptides for DH MC903, 318 for DH AEW, 266 for DRG MC903, and 271 for DRG AEW. Of these quantifiable peptides, we detected 30 that were differentially regulated in the tested models, after accounting for multiple testing correction ( ≤ 0.1). These include several peptide candidates derived from neuropeptide precursors, such as proSAAS, protachykinin-1, proenkephalin, and calcitonin gene-related peptide, some of them previously linked to itch. The peptides identified in this study may help elucidate our understanding about these debilitating disorders. Data are available via ProteomeXchange with identifier PXD015949.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060821PMC
http://dx.doi.org/10.1021/acs.jproteome.9b00758DOI Listing

Publication Analysis

Top Keywords

dorsal horn
8
dorsal root
8
root ganglia
8
itch
8
models chronic
8
itch signals
8
identification quantitation
8
quantitative characterization
4
characterization neuropeptide
4
neuropeptide level
4

Similar Publications

AIM2 promotes excitatory glutamate receptor expression by inhibiting STING and contributes to bone cancer pain in male mice.

Sci Rep

December 2024

Institute of Anesthesiology & Pain (IAP), Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.

Bone cancer pain (BCP) is a common clinical problem in cancer patients. The plasticity of excitatory neurons within the spinal dorsal horn plays a significant role in the development of BCP. This study explored the roles of absent in melanoma 2 (AIM2) and stimulator of interferon gene (STING) in BCP using male C57BL/6J mice.

View Article and Find Full Text PDF

Involvement of the Ipsilateral Tongue, an Intraoral Structure of Referred Pain due to Entrapment of the Greater Occipital Nerve.

Case Rep Neurol Med

December 2024

Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

This study reports a rare case of referred pain in the trigeminal nerve distribution caused by entrapment of the greater occipital nerve (GON). Notably, the pain extended to the ipsilateral tongue, an unusual intraoral involvement. GON entrapment can lead to sensitization in secondary nociceptive neurons within the trigeminocervical complex (TCC), which receives signals from both trigeminal and occipital nerves, causing referred facial pain.

View Article and Find Full Text PDF

Curcumin analog C16 attenuates bone cancer pain induced by MADB 106 breast cancer cells in female rats and inhibits the CREB/NLGN2 signaling axis by targeting CaMKⅠα.

Neuropharmacology

December 2024

The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University/The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Department of Anesthesiology and Pain Research Center, Jiaxing University Affiliated Hospital, The First Hospital of Jiaxing, Jiaxing, Zhejiang, 314001, China. Electronic address:

Bone cancer pain (BCP) is one of the most severe complications faced by patients with cancer; however, current pharmacological options are limited. Curcumin has been demonstrated to possess anti-inflammatory and analgesic properties; however, our preliminary research found that the analgesic efficiency of curcumin is not high in BCP. Consequently, curcumin analogs have emerged as a significant focus of our research.

View Article and Find Full Text PDF

Rats which experienced neonatal bladder inflammation (NBI) have been demonstrated to exhibit latent bladder hypersensitivity with a nociceptive component that becomes unmasked by a second inflammatory insult as an adult. Manifested as augmented reflex and neuronal responses to urinary bladder distension (UBD), these NBI-induced changes are revealed by using inflammation of nearby structures as an adult pretreatment. The effect of inflammation in distant structures is not known.

View Article and Find Full Text PDF

A spinal neural circuit for electroacupuncture that regulates gastric functional disorders.

J Integr Med

December 2024

College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, Anhui Province, China; Institute of Health and Medicine, Hefei Comprehensive National Scicence Center, Hefei 230051, Anhui Province, China. Electronic address:

Objective: Acupuncture therapies are known for their effectiveness in treating a variety of gastric diseases, although the mechanisms underlying these effects are not fully understood. This study tested the effectiveness of electroacupuncture (EA) at acupoints Zhongwan (RN12) and Weishu (BL21) for managing gastric motility disorder (GMD) and investigated the underlying mechanisms involved.

Methods: A GMD model was used to evaluate the impact of EA on various aspects of gastric function including the amplitude of gastric motility, electrogastrogram, food intake, and the rate of gastric emptying.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!