Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tandem solar cells (SCs) connecting two subcells with different absorption bands have the potential to reach the commercialized photovoltaic standard. However, the performance improvement of tandem architectures is still a challenge, primarily owing to the mismatch of band gaps in two subcells. Here, we demonstrate a two-dimensional (2D) BAs/InTe-based tandem SC, which could achieve solar-to-electric conversion efficiency higher than 30%. First, the narrow band gap of hexagonal single-layer BX (X = P and As) and wide band gap of single-layer YZ (Y = Ga and In, Z = S, Se, and Te) are found to have high thermodynamic stability based on density functional theory calculations. Next, considering narrow and wide band gaps at the HSE06 functional, single-layer BX/YZ-based tandem SCs are built to effectively capture a broad-band solar spectrum by combining such two subcells. Since the band gap of single-layer BAs matches well with that of the InTe monolayer, the power conversion efficiency of BAs/InTe-based tandem SC can reach as high as 30.2%. Moreover, it is important to note that the used materials, including few-layer GaZ and InSe, have been experimentally prepared, which strongly supports the high feasibility of the designed 2D tandem SCs in this work. Our constructed 2D-material-based devices can be competitive in realizing commercialized high-performance tandem SCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b21102 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!