Multivalent Dendrimers and their Differential Recognition of Short Single-Stranded DNAs of Various Length and Sequence.

Chempluschem

Institut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, ENSCM, CNRS, Place Eugène Bataillon, CC 047, 34095, Montpellier, France.

Published: May 2018

Polycationic dendrimers were generated through simple and versatile reversible amine/aldehyde-imine chemistry. The inherent CD spectroscopic signal arising from the helical structures of single-stranded DNA (ssDNA) undergoes a dramatic amplification in the presence of the synthesised polycationic dendrimers. Compared to the first-generation core molecule, the second-generation dendrimer shows high spectroscopic responses upon chiral recognition of short ssDNA, owing to the combination of self-assembly and multivalency effects. The maximum signal variation is reached at the molar ratio at which the ratio between the negative charges in ssDNA balance the positive charges of the dendrimers, thus the approach enables differential recognition of ssDNAs of different lengths. Altogether, these results accelerate the simple and systematic discovery of efficient adaptive molecules for biomimetic recognition of ssDNA with high accuracy.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.201800081DOI Listing

Publication Analysis

Top Keywords

differential recognition
8
recognition short
8
polycationic dendrimers
8
multivalent dendrimers
4
dendrimers differential
4
recognition
4
short single-stranded
4
single-stranded dnas
4
dnas length
4
length sequence
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!