Determination of causes of death via spectrochemical analysis of forensic autopsies-based pulmonary edema fluid samples with deep learning algorithm.

J Biophotonics

Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China.

Published: April 2020

This study investigated whether infrared spectroscopy combined with a deep learning algorithm could be a useful tool for determining causes of death by analyzing pulmonary edema fluid from forensic autopsies. A newly designed convolutional neural network-based deep learning framework, named DeepIR and eight popular machine learning algorithms, were used to construct classifiers. The prediction performances of these classifiers demonstrated that DeepIR outperformed the machine learning algorithms in establishing classifiers to determine the causes of death. Moreover, DeepIR was generally less dependent on preprocessing procedures than were the machine learning algorithms; it provided the validation accuracy with a narrow range from 0.9661 to 0.9856 and the test accuracy ranging from 0.8774 to 0.9167 on the raw pulmonary edema fluid spectral dataset and the nine preprocessing protocol-based datasets in our study. In conclusion, this study demonstrates that the deep learning-equipped Fourier transform infrared spectroscopy technique has the potential to be an effective aid for determining causes of death.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbio.201960144DOI Listing

Publication Analysis

Top Keywords

pulmonary edema
12
edema fluid
12
deep learning
12
machine learning
12
learning algorithms
12
learning algorithm
8
infrared spectroscopy
8
determining death
8
learning
6
determination death
4

Similar Publications

Background: Elevated intracranial pressure (ICP) is a potentially life-threatening condition requiring prompt intervention. While both mannitol and hypertonic saline (HTS) are commonly used hyperosmotic agents for treating elevated ICP, there is insufficient evidence comparing their renal safety profiles and overall effectiveness. This study protocol outlines a pragmatic randomized trial to compare protocol-based 11.

View Article and Find Full Text PDF

Early Results of an Infant Model of Orthotopic Cardiac Xenotransplantation.

J Heart Lung Transplant

January 2025

Division of Cardiac Surgery, Department of Surgery, Children's Hospital Los Angeles, Los Angeles, CA. Electronic address:

Objective: Genetically engineered porcine hearts may have an application for infants in need of a bridge to cardiac allotransplantation. The current animal model that resulted in 2 human applications has been validated in adult non-human primates only. We sought to create an infant animal model of life sustaining cardiac xenotransplantation to understand limitations specific to this age group.

View Article and Find Full Text PDF

The effect of tocilizumab treatment for skin fibrosis by inhibiting CD38 macrophages in systemic sclerosis.

Cell Immunol

December 2024

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China. Electronic address:

Background: Dermal and pulmonary fibrosis are the main clinical symptoms of systemic scleroderma (SSc), for which there are no effective therapeutic agents. Tocilizumab is thought to improve the symptoms of fibrosis, but the effect of tocilizumab on dermal fibrosis has not been explored. This study aims to investigate the therapeutic effect of tocilizumab on skin fibrosis by inhibiting CD38 macrophages in the bleomycin-induced SSc mice model.

View Article and Find Full Text PDF

This study investigates the therapeutic effects of recombinant human IL-10 (rhIL-10) administered via aerosol inhalation in acute lung injury (ALI), with a particular focus on neutrophils. It explores how rhIL-10, in the presence of platelets, modulates neutrophil polarization to ameliorate acute lung injury. Initially, the ALI model established in mice demonstrated that aerosol inhalation of rhIL-10 significantly mitigated the cytokine storm in the lungs, reduced pulmonary edema, and alleviated histopathological damage to lung tissue.

View Article and Find Full Text PDF

[Acute respiratory distress syndrome : Pathophysiology, definition and treatment strategies].

Med Klin Intensivmed Notfmed

January 2025

Universitätsklinik für Innere Medizin I, Medizinische Universität Wien, Allgemeines Krankenhaus der Stadt Wien, Währinger Gürtel 18-20, 1090, Wien, Österreich.

Acute respiratory distress syndrome (ARDS) is defined as an acute inflammatory syndrome leading to increased pulmonary capillary leakage and subsequent interstitial and alveolar pulmonary edema. Hypoxia is the predominant symptom. The definition of ARDS comprises acute onset, bilateral patchy infiltration on chest X‑ray and a reduction of the ratio of arterial partial pressure of oxygen (PaO) to the fraction of inspired oxygen (FiO), which also determines the classification into mild (≤ 300), moderate (≤ 200) and severe (≤ 100) ARDS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!