The biological function and underlying mechanism of microRNA-628-5p (miR-628-5p) remains to be clarified in the growth and progression of pancreatic ductal adenocarcinoma (PDAC). Here, the expression levels of miR-628-5p in PDAC tissues and cells were detected by quantitative reverse transcriptase polymerase chain reaction and in situ hybridization. The relationship between miR-628-5p expression and clinicopathologic characteristics was examined in human PDAC tissue samples. Gain- and loss-of-function and the putative targets of miR-628-5p were evaluated in PDAC cell lines. The upstream and downstream signals of miR-628-5p in PDAC were also examined. MiR-628-5p was lowly expressed in PDAC tissues and cell lines, and low miR-628-5p expression in PDAC tissues was associated with poor clinicopathological characteristics and shorter overall survival. Functionally, restoration of miR-628-5p expression decreased PDAC cell proliferation, migration, invasion, and promoted cell apoptosis, whereas miR-628-5p silencing abolished these biological behaviors. MiR-628-5p was found to target and negatively regulate phospholipid scramblase 1 and insulin receptor substrate 1 expression, which resulted in the inhibition of the AKT/NF-κB signaling pathway. MYC knockdown led to miR-628-5p upregulation, whereas MYC overexpression repressed miR-628-5p expression. These findings indicate that miR-628-5p functions as a tumor-suppressive microRNA in PDAC and implicate miR-628-5p as a potential therapeutic target for PDAC patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcp.29468 | DOI Listing |
J Exp Clin Cancer Res
December 2023
Department of Pharmacy, The Third Hospital of Xiamen, Xiamen, 361100, China.
Background: Within the tumor immune microenvironment (TME), tumor-associated macrophages (TAMs) are crucial in modulating polarization states to influence cancer development through metabolic reprogramming. While long non-coding RNAs (lncRNAs) have been shown to play a pivotal role in the progression of various cancers, the underlying mechanisms by which lncRNAs alter M2 polarization through macrophage metabolism remodeling remain unelucidated.
Methods: RNA sequencing was used to screen for differentially expressed lncRNAs in TAMs and normal tissue-resident macrophages (NTRMs) isolated from pancreatic ductal adenocarcinoma (PDAC) tissues, whilst RT-qPCR and FISH were employed to detect the expression level of SNHG17.
Curr Pharm Des
November 2023
Department of Urology, Shantou Central Hospital, Jinping District, Shantou 515031, China.
Background: microRNA-628-5p (miR-628-5p) has a significant impact on certain types of cancer. The precise function of miR-628-5p in the context of bladder urothelial carcinoma (BLCA) remains ambiguous.
Objective: We aimed to investigate the role of miR-628-5p in BLCA.
Cytotechnology
October 2023
Department of Medical Biology, Faculty of Medicine, Yuksek Ihtisas University, No.18A, 1505. Street, Ankara, 06530 Turkey.
miRNA expressions are altered during development of breast cancer (BC). The aim of this study is to identify novel cancer-related miRNAs and pathways to understand the mechanisms of BC subtypes. GSE59247 dataset was downloaded from gene expression omnibus (GEO) database and analyzed with GEO2R software.
View Article and Find Full Text PDFCell Mol Biol Lett
December 2022
Digestive Department, Affiliated Hospital of Guilin Medical College, No.15 Lequn Road, Xiufeng District, Guilin, 541001, Guangxi, China.
Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer. CircFUT8 has been shown to be upregulated in cancers, but its function in HCC remains unclear. Tumor-associated macrophages (TAMs) are one of the main components of the tumor microenvironment (TME), and M1 macrophages function as tumor suppressors in cancers.
View Article and Find Full Text PDFFront Oncol
October 2022
Key Laboratory of Tumor Molecular Biology, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong, China.
Long non-coding RNAs (lncRNAs) modulate cell proliferation, cycle, and apoptosis. However, the role of lncRNA-WFDC21P in the tumorigenesis of triple-negative breast cancer (TNBC) remains unclear. Results of this study demonstrated that WFDC21P levels significantly increased in TNBC, which was associated with the poor survival of patients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!