AI Article Synopsis

  • - The study assessed the effectiveness of analyzing whole exome sequencing (WES) data in pediatric epilepsy patients who had unexplained genetic causes despite previous clinical testing.
  • - Out of 125 participants, 40% were found to have pathogenic genetic variants, with specific genes identified that weren't previously linked to epilepsy.
  • - The findings suggest that early use of WES and its reanalysis can provide crucial insights for patients with epilepsy, especially those with developmental issues, enhancing diagnosis and understanding of associated genetic factors.

Article Abstract

Objective: We evaluated the yield of systematic analysis and/or reanalysis of whole exome sequencing (WES) data from a cohort of well-phenotyped pediatric patients with epilepsy and suspected but previously undetermined genetic etiology.

Methods: We identified and phenotyped 125 participants with pediatric epilepsy. Etiology was unexplained at the time of enrollment despite clinical testing, which included chromosomal microarray (57 patients), epilepsy gene panel (n = 48), both (n = 28), or WES (n = 8). Clinical epilepsy diagnoses included developmental and epileptic encephalopathy (DEE), febrile infection-related epilepsy syndrome, Rasmussen encephalitis, and other focal and generalized epilepsies. We analyzed WES data and compared the yield in participants with and without prior clinical genetic testing.

Results: Overall, we identified pathogenic or likely pathogenic variants in 40% (50/125) of our study participants. Nine patients with DEE had genetic variants in recently published genes that had not been recognized as epilepsy-related at the time of clinical testing (FGF12, GABBR1, GABBR2, ITPA, KAT6A, PTPN23, RHOBTB2, SATB2), and eight patients had genetic variants in candidate epilepsy genes (CAMTA1, FAT3, GABRA6, HUWE1, PTCHD1). Ninety participants had concomitant or subsequent clinical genetic testing, which was ultimately explanatory for 26% (23/90). Of the 67 participants whose molecular diagnoses were "unsolved" through clinical genetic testing, we identified pathogenic or likely pathogenic variants in 17 (25%).

Significance: Our data argue for early consideration of WES with iterative reanalysis for patients with epilepsy, particularly those with DEE or epilepsy with intellectual disability. Rigorous analysis of WES data of well-phenotyped patients with epilepsy leads to a broader understanding of gene-specific phenotypic spectra as well as candidate disease gene identification. We illustrate the dynamic nature of genetic diagnosis over time, with analysis and in some cases reanalysis of exome data leading to the identification of disease-associated variants among participants with previously nondiagnostic results from a variety of clinical testing strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404709PMC
http://dx.doi.org/10.1111/epi.16427DOI Listing

Publication Analysis

Top Keywords

patients epilepsy
16
wes data
12
clinical testing
12
clinical genetic
12
epilepsy
10
genetic
8
reanalysis exome
8
identified pathogenic
8
pathogenic pathogenic
8
pathogenic variants
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!