There is an emerging interest in the development of biomaterial-based nanoparticles. Recent studies have shown that starch nanoparticles (SNP's) could be prepared from starch granules with unique functional properties. Starch nanoparticles/nanocrystals can be prepared by acid or enzymatic hydrolysis, regeneration, mechanical treatments, and combined enzymatic and precipitation methods. Different approaches including chemical, physical, and enzymatic methods have been used to modify the SNP's to enhance and diversify their applications profile. SNP's have found novel applications in various food systems such as reinforcement materials in nanocomposites, encapsulating agents, emulsion stabilisers, and carrier and releasing agents.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2019.108765 | DOI Listing |
Foods
December 2024
Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón esq. Paseo Tollocan s/n, Col. Residencial Colón, Toluca 50120, Estado de Mexico, Mexico.
This study explored the effect of incorporating cellulose and starch nanoparticles, obtained from the Willd plant, on the physical and chemical properties of starch-based films derived from the same plant. Additionally, the synergistic effect of combining the nanostructures was assessed. The nanocomposite biopolymer films were prepared by the casting method using 1 and 3 wt% concentrations of the nanostructures (CNCs: cellulose nanocrystals, CNFs: cellulose nanofibers, SNCs: starch nanocrystals), or their blend.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China.
Selenium nanoparticles (SeNPs) can be absorbed by plants, thereby affecting plant physiological activity, regulating gene expression, and altering metabolite content. However, the molecular mechanisms by which exogenous selenium affects coll.et Hemsl plant secondary metabolites remain unclear.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China. Electronic address:
With an increasing emphasis on environmental protection and sustainability, natural polymers like proteins and polysaccharides are being utilized more frequently in the development of biodegradable food packaging. However, the limited properties of these biopolymers have restricted their widespread applicability within the food industry. To address this issue, eugenol-loaded zein nanoparticles (ZE NPs) were incorporated into pea starch/soy protein-based films, and their effect on the physicochemical properties of these films were investigated.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences, Santa Cruz State University, 45654-370 Ilhéus, Brazil. Electronic address:
This study explored the synergistic combination of silver nanoparticles (AgNPs), eucalyptus-derived nanofibrillated cellulose (NFC) and cassava starch to develop bionanocomposites with advanced properties suitable for sustainable and antifungal packaging applications. The influence of AgNPs synthesized through a green method using cocoa bean shell combined with varying concentrations of NFC were investigated. Morphological (scanning electron microscopy and atomic force microscopy), optical (L*, C*, °hue, and opacity), chemical (Fourier transform infrared spectroscopy), mechanical (puncture force, tensile strength, and Young's modulus), rheological (flow curve and frequency sweeps, strain, and stress), barrier, and hydrophilicity properties (water vapor permeability, solubility, wettability, and contact angle), as well as the antifungal effect against pathogens (Botrytis cinerea, Penicillium expansum, Colletotrichum musae, and Fusarium semitectum), were analyzed.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Chemical Engineering, McMaster University, 1280 Main Street, West Hamilton, ON L8S 4L8, Canada. Electronic address:
While bipolar disorder patients can benefit from lithium therapy, high levels of lithium in the serum can induce undesirable systemic side effects. Intranasal (IN) lithium delivery offers a potential solution to this challenge given its potential to facilitate improved lithium transport to brain when delivered to the olfactory mucosa. Herein, a sprayable, in situ forming nanoparticle network hydrogel (NNH) based on Schiff base interactions between chelator-functionalized oxidized starch nanoparticles (SNPs) and carboxymethyl chitosan (CMCh) is reported that can be deployed within the nasal cavity to release ultra-small penetrative SNPs over time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!