Sediment containing numerous nutrients and pollutants has become an important consideration when treating black-odor water. Excessive activated sludge produced in wastewater treatment plants contains a large number of microorganisms, which is beneficial for removing organics and nutrients from the black-odor sediment. In this study, three types of sludge from a secondary sedimentation tank (SST), a digestion tank (DT), and an aerobic tank treating landfill leachate (AT_leachate) were used to treat black-odor sediment, respectively. All the three types of activated sludge enhanced the treatment performance of sediment. The SST sludge worked the best with the optimal dosage of 2.56 g/(kg sediment), and the removal of nitrogen and organics reached 57.03 and 28.14%, respectively. Illumina MiSeq sequencing revealed that the activated sludge significantly affected the microbial community of the sediment. In particular, SST sludge resulted in significant increase in the number of microorganisms related to nitrification and sulfur metabolism to 10.68 and 10.97%, respectively. This was found to be important for degrading organics and promoting nitrogen removal. This study provides an efficient strategy for the treatment of black-odor sediment, and also realizes the complete utilization of waste activated sludge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.136651 | DOI Listing |
Molecules
February 2025
Department of Environmental Protection Technology, Sarayönü Vocational High School, Selcuk University, 42430 Konya, Türkiye.
The extraction of underground resources has accelerated globally, in response to the demands of advancing technology and the rapidly growing population. The increase in drilling activities has caused an increase in environmental pollution problems caused by waste generated during drilling activities, namely drilling sludge and drilling wastewater. In this study, the treatability of wastewater generated during drilling operations in a basin, where an underground gas storage area was created, was investigated using an electrocoagulation (EC) process, using different electrode pairs.
View Article and Find Full Text PDFBMC Plant Biol
March 2025
Department of Agrochemistry, SoilScience, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Brno, 613 00, Czech Republic.
The thermal conversion of municipal sewage sludge (MSS) offers significant potential for sustainable waste management, particularly through the production of biochar. This study investigates the properties and soil application effects of three biochar types produced via pyrolysis: (i) pure sewage sludge (100%), (ii) sewage sludge blended with sawdust (50%+50%), and (iii) sewage sludge combined with sawdust and zeolite (50%+45%+5%). These biochars were applied at rates of 2.
View Article and Find Full Text PDFChemosphere
March 2025
Environmental Microbiology Group, Institute of Water Research, University of Granada, Granada, 18003, Spain; Department of Microbiology, University of Granada, Granada, 18071, Spain.
There is increasing awareness of the presence of anticancer drugs (ACDs) in wastewater. Nonetheless, how ACDs affect the performance of wastewater treatment systems and their microbial populations remains largely unclear. This study investigated the effects of three common ACDs (cyclophosphamide, tamoxifen, and methotrexate) at varying concentrations on physicochemical parameters and drug removal efficiency in an aerobic granular sludge (AGS) system operated in a continuous-flow reactor.
View Article and Find Full Text PDFWater Res
March 2025
National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
The accumulation of micro/nanoplastics in wastewater significantly hinders denitrification in biological wastewater treatment systems, yet the intrinsic mechanisms are not fully understood. Herein, we combined signal molecule monitoring, electrochemical characterization and multi-omics analysis to investigate how quorum sensing (QS)-mediated microbial interactions influence denitrification in aerobic granular sludge systems. Results showed that after 90-day exposure to micro/nanoplastics, cross-talk between multiple signal molecules significantly declined, thereby disrupting the QS system to opportunely sense changes in the external environment.
View Article and Find Full Text PDFJ Environ Manage
March 2025
State Key Laboratory of Petroleum Pollution Control, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
Ammonia (NH) and nitrous oxide (NO) release are the main causes of nitrogen loss during aerobic composting. In this study, hyperthermophilic aerobic composting of refinery waste activated sludge (RWAS) was performed by adding extreme thermophilic bacteria, and the effects of inoculation on NH and NO emissions were systematically studied. The results revealed that inoculation achieved hyperthermophilic aerobic composting (T group), increased maturity, and reduced NH and NO emissions by 32.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!