Harmful algal blooms (HABs) are serious problems in landscape waters sourced from reclaimed water. In this study, the suppression effects of UV-C irradiation on microalgal growth were researched to find a possible preventive approach. Microcystis aeruginosa and Chlorella vulgaris were exposed to UV-C irradiation and then cultured in real reclaimed water for 7-18 d. UV-C irradiation at 50-200 mJ cm could inhibit the growth of M. aeruginosa, C. vulgaris, and both microalgae in co-culture for 3-14, 1-3, and 1-5 d respectively. In addition, UV-C irradiation could cause damage to the cell integrity. At 100-200 mJ cm UV-C, the proportion of microalgal membrane damage (P) in M. aeruginosa cells increased rapidly to 56%-76% from day 3, whereas that in C. vulgaris cells increased to 23%-62% within 3 d. The photochemical efficiency (represented by Y value) of the irradiated groups was negatively affected immediately after UV-C irradiation and recovered gradually during the incubation. The Y value of M. aeruginosa cells began to recover from days 3 to 14, whereas that of C. vulgaris recovered much more quickly, from days 0.1 to 1. Overall, the irradiation-induced suppressive effects on algal growth correlated positively with the UV-C doses. Because M. aeruginosa was more sensitive to UV-C irradiation, UV-C irradiation not only controlled the total biomass of the mixed algae but also selectively reestablished the dominance of the nontoxic C. vulgaris.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.136374 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!