The growth suppression effects of UV-C irradiation on Microcystis aeruginosa and Chlorella vulgaris under solo-culture and co-culture conditions in reclaimed water.

Sci Total Environ

Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China. Electronic address:

Published: April 2020

Harmful algal blooms (HABs) are serious problems in landscape waters sourced from reclaimed water. In this study, the suppression effects of UV-C irradiation on microalgal growth were researched to find a possible preventive approach. Microcystis aeruginosa and Chlorella vulgaris were exposed to UV-C irradiation and then cultured in real reclaimed water for 7-18 d. UV-C irradiation at 50-200 mJ cm could inhibit the growth of M. aeruginosa, C. vulgaris, and both microalgae in co-culture for 3-14, 1-3, and 1-5 d respectively. In addition, UV-C irradiation could cause damage to the cell integrity. At 100-200 mJ cm UV-C, the proportion of microalgal membrane damage (P) in M. aeruginosa cells increased rapidly to 56%-76% from day 3, whereas that in C. vulgaris cells increased to 23%-62% within 3 d. The photochemical efficiency (represented by Y value) of the irradiated groups was negatively affected immediately after UV-C irradiation and recovered gradually during the incubation. The Y value of M. aeruginosa cells began to recover from days 3 to 14, whereas that of C. vulgaris recovered much more quickly, from days 0.1 to 1. Overall, the irradiation-induced suppressive effects on algal growth correlated positively with the UV-C doses. Because M. aeruginosa was more sensitive to UV-C irradiation, UV-C irradiation not only controlled the total biomass of the mixed algae but also selectively reestablished the dominance of the nontoxic C. vulgaris.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2019.136374DOI Listing

Publication Analysis

Top Keywords

uv-c irradiation
32
reclaimed water
12
uv-c
10
suppression effects
8
effects uv-c
8
irradiation
8
microcystis aeruginosa
8
aeruginosa chlorella
8
chlorella vulgaris
8
aeruginosa cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!