A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intracellular pH-propelled assembly of smart carbon nanodots and selective photothermal therapy for cancer cells. | LitMetric

Intracellular pH-propelled assembly of smart carbon nanodots and selective photothermal therapy for cancer cells.

Colloids Surf B Biointerfaces

State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China. Electronic address:

Published: April 2020

A kind of smart carbon nanodots (CNDs) with the pH response feature was prepared by the one-pot hydrothermal treatment of citric acid and dicyandiamide, which was used for the differentiation of cancer/normal cells and the selective photothermal therapy (PTT) of cancer cells. When the smart CNDs were cultured with cells, they were highly internalized in the lysosomes of cells. Since the small-sized CNDs (about 5 nm) tends to form aggregation (as large as about 20 nm or even larger) under an acid condition (pH = 4.7) due to the electrostatic attraction produced by the surface protonation, relatively severer aggregation of the CNDs were observed in liver cancer cells (HepG2 cells) relative to normal ones (LO2 cells) due to a relative lower pH in the lysosomes of HepG2 cells, which endows them a new strong absorption band at longer wavelengths (450-900 nm) and a higher photothermal conversion efficiency (42.13 %), benefiting to differentiated PTT. The flow cytometric data indicates strong photothermal ablation (8 min, 509.6 mW/cm) for cancer cells with the assistance of these smart CNDs achieves 82 % death rate of cancer cells, while much less damage is observed on the normal cells (6.35 %). To the best of our knowledge, this is the first report about CNDs for selective PTT owing to their intrinsic property without the aid of any other targeting ligands. These smart CNDs are also available for other acid-responsive sensing systems, and this study inspires us in the synthesis of near-infrared featured carbon materials.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2019.110724DOI Listing

Publication Analysis

Top Keywords

cancer cells
20
cells
12
smart cnds
12
smart carbon
8
carbon nanodots
8
selective photothermal
8
photothermal therapy
8
hepg2 cells
8
cells relative
8
cnds
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!