The brain is a complex 3-dimensional structure, the organization of which provides a local environment that directly influences the survival, proliferation, differentiation, migration, and plasticity of neurons. To probe the effects of damage and disease on these cells, a synthetic environment is needed. Three-dimensional culturing of stem cells, neural progenitors, and neurons within fabricated biomaterials has demonstrated superior biomimetic properties over conventional 2-dimensional cultureware, offering direct recapitulation of both cell-cell and cell-extracellular matrix interactions. Within this review we address the benefits of deploying biomaterials as advanced cell culture tools capable of influencing neuronal fate and as in vitro models of the native in vivo microenvironment. We highlight recent and promising biomaterials approaches toward understanding neural network and their function relevant to neurodevelopment and provide our perspective on how these materials can be engineered and programmed to study both the healthy and diseased nervous system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6970178 | PMC |
http://dx.doi.org/10.1016/j.isci.2019.100788 | DOI Listing |
Mater Today Bio
February 2025
Anhui University of Chinese Medicine, Hefei, 230012, China.
The therapeutic effect of immune checkpoint inhibitors (ICIs) in triple-negative breast cancer (TNBC) is unsatisfactory. The immune "cold" microenvironment caused by tumor-associated fibroblasts (TAFs) has an adverse effect on the antitumor response. Therefore, in this study, mixed cell membrane-coated porous magnetic nanoparticles (PMNPs) were constructed to deliver salvianolic acid B (SAB) to induce an antitumor immune response, facilitating the transition from a "cold" to a "hot" tumor and ultimately enhancing the therapeutic efficacy of immune checkpoint inhibitors.
View Article and Find Full Text PDFSmall
January 2025
School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
Fluorescent light-up aptamer/fluorogen pairs are powerful tools for tracking RNA in the cell, however limitations in thermostability and fluorescence intensity exist. Current in vitro selection techniques struggle to mimic complex intracellular environments, limiting in vivo biomolecule functionality. Taking inspiration from microenvironment-dependent RNA folding observed in cells and organelle-mimicking droplets, an efficient system is created that uses microscale heated water droplets to simulate intracellular conditions, effectively replicating the intracellular RNA folding landscape.
View Article and Find Full Text PDFTechnol Cancer Res Treat
January 2025
Cell Therapy Center, The University of Jordan, Amman, Jordan.
Background: Doxorubicin (DOX) is a potent chemotherapeutic agent for breast cancer, but its effectiveness is often diminished by resistance mechanisms, particularly through p-glycoprotein (P-gp) mediated drug efflux. Clarithromycin (CAM), a macrolide antibiotic, inhibits multiple metabolic pathways including CYP3A and P-gp, potentially countering DOX resistance.
Objective: This study aimed to evaluate the potentiation of DOX and its effectiveness against the MCF-7 breast cancer cell line by encapsulating both DOX and CAM in PEGylated liposomes.
Small Methods
January 2025
School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, P. R. China.
The unique adhesion capabilities of soft-bodied creatures such as leeches and octopuses have provided considerable inspiration for the development of artificial adhesive materials. However, previous studies have either focused on the design of sucker structures or concentrated on the synthesis of adhesive materials, with the combination of these two aspects not yet having been deeply investigated. In this study, inspired from leech's unique adsorption ability, a biomimetic approach is proposed that combined artificial sucker and mucus, to achieve remarkable adhesion stability on rough surfaces using 5 cm diameter silicone suction cups.
View Article and Find Full Text PDFSmall Methods
January 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China.
The insufficient density and discontinuity of solar energy of photothermal superhydrophobic flexible film seriously affect the practical application. Light energy harvesting and heat energy storage are effective ways to solve this problem. Inspired by the viscous temperature-regulating material within the inflorescence of Lobelia telekii and the arrangement of bracts on its surface, a flexible film for photoheat storage is proposed that integrated a three-order photoheat trap and one-order heat storage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!