A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

How much are we exposed to alcohol in electronic media? Development of the Alcoholic Beverage Identification Deep Learning Algorithm (ABIDLA). | LitMetric

Background: Evidence demonstrates that seeing alcoholic beverages in electronic media increases alcohol initiation and frequent and excessive drinking, particularly among young people. To efficiently assess this exposure, the aim was to develop the Alcoholic Beverage Identification Deep Learning Algorithm (ABIDLA) to automatically identify beer, wine and champagne/sparkling wine from images.

Methods: Using a specifically developed software, three coders annotated 57,186 images downloaded from Google. Supplemented by 10,000 images from ImageNet, images were split randomly into training data (70 %), validation data (10 %) and testing data (20 %). For retest reliability, a fourth coder re-annotated a random subset of 2004 images. Algorithms were trained using two state-of-the-art convolutional neural networks, Resnet (with different depths) and Densenet-121.

Results: With a correct classification (accuracy) of 73.75 % when using six beverage categories (beer glass, beer bottle, beer can, wine, champagne, and other images), 84.09 % with three (beer, wine/champagne, others) and 85.22 % with two (beer/wine/champagne, others), Densenet-121 slightly outperformed all Resnet models. The highest accuracy was obtained for wine (78.91 %) followed by beer can (77.43 %) and beer cup (73.56 %). Interrater reliability was almost perfect between the coders and the expert (Kappa = .903) and substantial between Densenet-121 and the coders (Kappa = .681).

Conclusions: Free from any response or coding burden and with a relatively high accuracy, the ABIDLA offers the possibility to screen all kinds of electronic media for images of alcohol. Providing more comprehensive evidence on exposure to alcoholic beverages is important because exposure instigates alcohol initiation and frequent and excessive drinking.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drugalcdep.2020.107841DOI Listing

Publication Analysis

Top Keywords

alcoholic beverage
8
beverage identification
8
identification deep
8
deep learning
8
learning algorithm
8
algorithm abidla
8
alcoholic beverages
8
electronic media
8
alcohol initiation
8
initiation frequent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!