Cryo-EM structures of cardiac thin filaments reveal the 3D architecture of troponin.

J Struct Biol

The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. Electronic address:

Published: March 2020

Troponin is an essential component of striated muscle and it regulates the sliding of actomyosin system in a calcium-dependent manner. Despite its importance, the structure of troponin has been elusive due to its high structural heterogeneity. In this study, we analyzed the 3D structures of murine cardiac thin filaments using a cryo-electron microscope equipped with a Volta phase plate (VPP). Contrast enhancement by a VPP enabled us to reconstruct the entire repeat of the thin filament. We determined the orientation of troponin relative to F-actin and tropomyosin, and characterized the interactions between troponin and tropomyosin. This study provides a structural basis for understanding the molecular mechanism of actomyosin system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2020.107450DOI Listing

Publication Analysis

Top Keywords

cardiac thin
8
thin filaments
8
actomyosin system
8
troponin
5
cryo-em structures
4
structures cardiac
4
filaments reveal
4
reveal architecture
4
architecture troponin
4
troponin troponin
4

Similar Publications

Adipose tissue, particularly white adipose tissue (WAT), plays a central role in energy storage and metabolic regulation. Excess WAT, especially visceral fat, is strongly linked to metabolic disorders such as obesity and type 2 diabetes. The browning of WAT, whereby white fat cells acquire characteristics of brown adipose tissue (BAT) with enhanced thermogenic capacity, represents a promising strategy to enhance metabolic health.

View Article and Find Full Text PDF

Assessment of bystander coronary artery disease in transcatheter aortic valve replacement (TAVR) patients using noncoronary-dedicated planning computed tomography angiography (CTA): diagnostic accuracy in a retrospective real-world cohort.

Clin Radiol

December 2024

Department of Radiology, Division of General Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036 Graz, Austria; Department of Radiology and Nuclear Medicine, University Hospital Wiener Neustadt, Corvinusring 3-5, 2700 Wiener Neustadt, Austria.

Aim: To assess the diagnostic potential of a noncoronary-dedicated pre-TAVR CT angiography (CTA) conducted as a prospective ECG-gated scan without premedication and standard cardiac reconstructions in evaluating bystander coronary artery disease (CAD) against invasive coronary angiography (ICA) as the gold standard.

Materials And Methods: This retrospective study included 232 patients who underwent both CTA and ICA as part of their pre-TAVR evaluation. Exclusion criteria included prior stent, pacemaker, coronary artery bypass, or valve surgery.

View Article and Find Full Text PDF

Background: The prevalence of very high-risk atherosclerotic cardiovascular disease (ASCVD) is significant in China, with suboptimal rates of low-density lipoprotein cholesterol (LDL-C) compliance exacerbating plaque instability and causing a higher incidence of major adverse cardiac events (MACEs). Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) are effective in reducing LDL-C levels, increase the stability of vulnerable plaque, and influence the progression of atherosclerosis through multiple mechanisms as demonstrated in animal studies. However, there is currently a lack of evidence regarding the efficacy and safety of high-intensity statin therapy combined with PCSK9i in the secondary prevention of ASCVD in the Chinese population.

View Article and Find Full Text PDF

Left images: Top: (A) Echocardiography shows a dilated pulmonary artery, large aortopulmonary window (dotted line), and abnormally positioned aortic arch. (B) MIP image reveals superior RV, inferior LV, and elongated arch vessels (arrows). Bottom: MinIP shows a thin left main bronchus and non-aerated RML (asterisk).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!