Herein, porous sodium alginate/graphite based hybrid hydrogel was fabricated as an effective adsorbent for organic pollutant. Sodium alginate was modified through graft polymerization of acrylic acid and subsequently loaded with graphite powder to enhance its adsorption capability. The synthesized sodium alginate cross-linked acrylic acid/graphite (NaA-cl-AAc/GP) hydrogel composite was utilized in the removal of malachite green (MG) dye from aqueous solution using batch adsorption experiments. The NaA-cl-AAc/GP hydrogel composite was characterized by infrared spectroscopy, Raman spectroscopy, thermo-gravimetric analysis, scanning electron microscopy, x-ray photoelectron spectroscopy and x-ray diffraction. Under optimized experimental conditions, a maximum adsorption capacity of 628.93 mg g was attained for malachite green dye. Moreover, the adsorption process could be well described by the Langmuir isotherm model and pseudo-second-order kinetic model. The hydrogel composite also showed 91% adsorption after three consecutive cycles of dye adsorption-desorption. Therefore, the NaA-cl-AAc/GP hydrogel composite is a potentially favourable material towards dye pollution remediation owing to its better swelling rate, environment friendliness, high adsorption potential and regeneration capability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.01.142 | DOI Listing |
Front Bioeng Biotechnol
January 2025
Department of Emergency Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
Introduction: Bacterial infection, a complex wound microenvironment, and a persistent inflammatory response in acute wounds can result in delayed healing and abnormal scar formation, thereby compromising the normal function and aesthetic appearance of skin tissue. This issue represents one of the most challenging problems in clinical practice. This study aims to develop a hydrogel dressing specifically designed for the treatment of acute wounds, providing immediate and effective protection for the affected areas.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China. Electronic address:
A multifunctional hydrogel with outstanding mechanical properties and excellent ionic conductivity holds immense potential for applications in various fields, such as healthcare monitoring, and various devices, such as wearable devices and flexible electronics. However, developing hydrogels that combine high mechanical strength with efficient electrical conductivity remains a considerable challenge. Herein, an ion-conductive hydrogel with excellent mechanical properties and ionic conductivity is successfully created.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory on Structure and Properties of Polymers, Faculty of Chemistry and Pharmacy, University of Sofia, 1, J. Bourchier Blvd., 1164 Sofia, Bulgaria.
: This study is an attempt to reveal the potential of two types of interpenetrating polymer network (IPN) hydrogels based on poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(N,N-dimethylacrylamide) (PDMAM). These IPNs were evaluated for their potential for dermal delivery of the hydrophobic drug dexamethasone (DEX). : The two types of IPNs were analyzed for their rheological behavior, swelling characteristics, and drug-loading capacity with DEX.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, China.
The trace detection of pyocyanin (PCN) is crucial for infection control, and electrochemical sensing technology holds strong potential for application in this field. A pivotal challenge in utilizing carbon materials within electrochemical sensors lies in constructing carbon-based films with robust adhesion. To address this issue, a novel composite hydrogel consisting of multi-walled carbon nanotubes/polyvinyl alcohol/phosphotungstic acid (MWCNTs/PVA/PTA) was proposed in this study, resulting in the preparation of a highly sensitive and stable PCN electrochemical sensor.
View Article and Find Full Text PDFAntioxidants (Basel)
January 2025
State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China.
Whey protein isolate (WPI) has functional properties such as gelation and emulsification. Emulsion gels combine the benefits of both emulsions and hydrogels. In this study, WPI hydrogels and emulsion gels were developed with goji oil (GO) as the oil phase by the inclusion of blueberry extract (BE) in the protein matrix.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!