Dynamics of cardiomyocyte and muscle stem cell proliferation in pig.

Exp Cell Res

Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, China. Electronic address:

Published: March 2020

The cardiac and skeletal muscle tissues are both striated and contractile but their intrinsic cellular properties are distinct. The minimal cardiomyocyte proliferation and the lack of cardiac stem cells directly leads to poor heart repair in adult mammals. But in skeletal muscle, the robust proliferation of widespread muscle stem cells support efficient muscle regeneration. The endogenous cardiomyocyte and muscle stem cell proliferation has been analyzed in common laboratory animals but not in large mammals including pigs, which are more comparable to human. In this study, we rigorously examined the cell cycle dynamics of porcine cardiomyocytes and muscle stem cells through different developmental stages. Proliferative cardiomyocytes and muscle stem cells were broadly observed in the embryonic heart and limb muscle respectively. Muscle stem cells continue to proliferate postnatally but cardiomyocyte proliferation was drastically reduced after birth. However, robust cardiomyocyte cell cycle activity was detected around postnatal day 20, which could be attributed to the binucleation but not cell division. Increased proliferating cells were detected in maternal heart during early pregnancy but they represent non-cardiomyocyte cell types. The islet1 expressing cells were only identified in the embryonic and new born porcine hearts. Furthermore, the accumulated oxidative DNA damage in the cardiac but not skeletal muscle during development could be responsible for the diminished cardiomyocyte proliferation in adult pig. Similarities and differences in the proliferation of heart and skeletal muscle cells are identified in pigs across different developmental stages. Such cellular proliferative features must be taken into account when using porcine models for cardiovascular and muscular research.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2020.111854DOI Listing

Publication Analysis

Top Keywords

muscle stem
24
stem cells
20
skeletal muscle
16
muscle
12
cardiomyocyte proliferation
12
cardiomyocyte muscle
8
stem cell
8
cell proliferation
8
cardiac skeletal
8
cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!