Ultrathin agaric-like ZnO with Pd dopant for aniline sensor and DFT investigation.

J Hazard Mater

State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 China; DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering and Advanced Technology Institute, University of Surrey, Guildford, Surrey, GU2 7XH, UK. Electronic address:

Published: April 2020

Aniline detection is of great importance in many industries, but most of the aniline sensors suffers from tedious and time consuming process. Herein, we present an efficient aniline sensor based on Pd decorated ZnO nanomaterials. Ultrathin ZnO nanosheets were synthesized by a facile one-step hydrothermal method. The nanosheets were corrugated into a unique agaric morphology, endorsing the nanomaterials with high surface area that is ideal for gas sensing applications. The obtained ZnO nanosheets were then uniformly decorated with uniform Pd nanoparticles (Pd NPs) around 5 nm in diameter. Gas sensing experiment on the ZnO decorate with different amount of Pd nanoparticles were systematically evaluated. The sample decorated with 0.3 % Pd NPs (Pd-ZnO-0.3) exhibited the highest sensitivity to aniline, which is about two orders higher than that of the pure ZnO nanosheet. The gas sensor based on Pd-ZnO-0.3 has a detection limit to aniline down to 0.5 ppm, with very short response and recovery times of 29 s and 23 s, respectively to 100 ppm aniline. First-principles DFT study was employed to provide the sensing mechanism. The improved sensing performance could be attributed to the increasing adsorbed oxygen and tunable band alignment for Pd-ZnO materials. This work provides new insights to the design strategy of Pd-decorated ZnO nanomaterials for high performance gas sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122069DOI Listing

Publication Analysis

Top Keywords

aniline sensor
8
sensor based
8
zno nanomaterials
8
zno nanosheets
8
nanomaterials high
8
gas sensing
8
zno
7
aniline
7
ultrathin agaric-like
4
agaric-like zno
4

Similar Publications

The g-C3N4/CS biosensor was designed, fabricated, and tested using compounds such as glucose, urine, lactose, and flutamide at a molarity of 10 µM, which could demonstrate a high sensitivity of 200 μm-1 for flutamide. Powerful effective medium theory and FDTD simulation were used to predict the most favorable mode and plasmonic properties of a graphite carbon nitride and chitosan nanocomposite. The research also explores the characteristics of surface plasmon resonance exhibited by the nanocomposite as the chitosan content is adjusted.

View Article and Find Full Text PDF

The widespread adoption and commercialization of lateral flow assays (LFAs) for clinical diagnosis have been hindered by limitations in sensitivity, specificity, and the absence of quantitative data. To address these challenges, we developed aptamer-architectured gold nanoparticles as nanozymes that catalytically convert -phenylenediamine (PPD) into Bandrowski's base (BB), thereby amplifying signal strength and sensitivity. The physiochemical properties of the nanozymes were characterized and their specific binding efficiency was demonstrated using experimental studies.

View Article and Find Full Text PDF

The transient receptor potential ankyrin 1 (TRPA1) channels, characterized as nonselective cation channels with permeability to calcium ions (Ca), are part of the extensive family of transient receptor potential (TRP) channels. Research has demonstrated that TRPA1 channels function as sensors for oxidative stress in the renal tubules. Additionally, TRPA1 expression has increased in renal tissue following ischemia-reperfusion (IR).

View Article and Find Full Text PDF

Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.

View Article and Find Full Text PDF

L-tryptophan carbon dots as a fluorescent probe for malachite green detection.

Spectrochim Acta A Mol Biomol Spectrosc

March 2025

Department of Electronics, School of Electrical and Electronics Engineering, SASTRA deemed to be University, Thanjavur 613401, India. Electronic address:

Development of a rapid and sensitive detection method for hazardous dyes attracts considerable research interest. In this work, L-Tryptophan-based Carbon dots were developed as a fluorescence sensor for the detection of Malachite green (MG). Green fluorescent L-Trp-C-dots were synthesized by a simple pyrolysis technique using L-Trp as the starting precursor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!