Aniline detection is of great importance in many industries, but most of the aniline sensors suffers from tedious and time consuming process. Herein, we present an efficient aniline sensor based on Pd decorated ZnO nanomaterials. Ultrathin ZnO nanosheets were synthesized by a facile one-step hydrothermal method. The nanosheets were corrugated into a unique agaric morphology, endorsing the nanomaterials with high surface area that is ideal for gas sensing applications. The obtained ZnO nanosheets were then uniformly decorated with uniform Pd nanoparticles (Pd NPs) around 5 nm in diameter. Gas sensing experiment on the ZnO decorate with different amount of Pd nanoparticles were systematically evaluated. The sample decorated with 0.3 % Pd NPs (Pd-ZnO-0.3) exhibited the highest sensitivity to aniline, which is about two orders higher than that of the pure ZnO nanosheet. The gas sensor based on Pd-ZnO-0.3 has a detection limit to aniline down to 0.5 ppm, with very short response and recovery times of 29 s and 23 s, respectively to 100 ppm aniline. First-principles DFT study was employed to provide the sensing mechanism. The improved sensing performance could be attributed to the increasing adsorbed oxygen and tunable band alignment for Pd-ZnO materials. This work provides new insights to the design strategy of Pd-decorated ZnO nanomaterials for high performance gas sensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.122069 | DOI Listing |
Sci Rep
January 2025
Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
The g-C3N4/CS biosensor was designed, fabricated, and tested using compounds such as glucose, urine, lactose, and flutamide at a molarity of 10 µM, which could demonstrate a high sensitivity of 200 μm-1 for flutamide. Powerful effective medium theory and FDTD simulation were used to predict the most favorable mode and plasmonic properties of a graphite carbon nitride and chitosan nanocomposite. The research also explores the characteristics of surface plasmon resonance exhibited by the nanocomposite as the chitosan content is adjusted.
View Article and Find Full Text PDFNanoscale
January 2025
Division of Biophotonics and Imaging, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram-695012, Kerala, India.
The widespread adoption and commercialization of lateral flow assays (LFAs) for clinical diagnosis have been hindered by limitations in sensitivity, specificity, and the absence of quantitative data. To address these challenges, we developed aptamer-architectured gold nanoparticles as nanozymes that catalytically convert -phenylenediamine (PPD) into Bandrowski's base (BB), thereby amplifying signal strength and sensitivity. The physiochemical properties of the nanozymes were characterized and their specific binding efficiency was demonstrated using experimental studies.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Veterinary Medicine, Osmaniye Korkut Ata University, Vocational School of Health Services, Osmaniye, Turkey.
The transient receptor potential ankyrin 1 (TRPA1) channels, characterized as nonselective cation channels with permeability to calcium ions (Ca), are part of the extensive family of transient receptor potential (TRP) channels. Research has demonstrated that TRPA1 channels function as sensors for oxidative stress in the renal tubules. Additionally, TRPA1 expression has increased in renal tissue following ischemia-reperfusion (IR).
View Article and Find Full Text PDFACS Sens
January 2025
Dipartimento di Chimica, Università degli Studi di Milano, Golgi 19, 20133 Milan, Italy.
Accurate methods for detecting volatile organic compounds (VOCs) are essential for noninvasive disease diagnosis, with breath analysis providing a simpler, user-friendly alternative to traditional diagnostic tools. However, challenges remain in low-temperature VOC solid-state sensors, especially concerning their selectivity and functionality at room temperature. Herein, we present key insights into optimizing multiwalled carbon nanotubes (MWCNTs)/polyaniline (PANI) and ZnO nanocomposites for efficient, light-free selective acetone sensing.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
March 2025
Department of Electronics, School of Electrical and Electronics Engineering, SASTRA deemed to be University, Thanjavur 613401, India. Electronic address:
Development of a rapid and sensitive detection method for hazardous dyes attracts considerable research interest. In this work, L-Tryptophan-based Carbon dots were developed as a fluorescence sensor for the detection of Malachite green (MG). Green fluorescent L-Trp-C-dots were synthesized by a simple pyrolysis technique using L-Trp as the starting precursor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!