Adsorption of fluoride from fertilizer industry effluent using carbon nanotubes stabilized in chitosan sponge as adsorbent was evaluated. The effluent was produced in the washing of acid gases during the reaction in fertilizer production and all assays were performed using this hazardous material. Adsorbent characterization and ions interactions were elucidated from differential scanning calorimetry, thermal gravimetric analyses, X-ray diffraction, scanning electron microscopy dispersive energy X-ray spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. The effluent presented pH 3 and its value not changed in the adsorption assays, maintaining the conditions of the process. The kinetics assays of fluoride from industry effluent were performed in different stirring rates from 100 to 300 rpm. It was observed that adsorption was initially fast reaching the equilibrium at 300 rpm in 20 min. The adsorption capacity was around 975.4 mg g, showing the potential of the hybrid material to remove fluoride from a real matrix. The high adsorption capacity was attributed to the chitosan functional groups and the high interaction area promoted by sponge form and the carbon nanotube. Reuse and regeneration of the CNT-CS were investigated and 5 cycles were obtained. The adsorption capacity kept similar values in all cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122042DOI Listing

Publication Analysis

Top Keywords

industry effluent
12
adsorption capacity
12
fluoride fertilizer
8
fertilizer industry
8
effluent carbon
8
carbon nanotubes
8
nanotubes stabilized
8
stabilized chitosan
8
chitosan sponge
8
adsorption
6

Similar Publications

The present study demonstrates the significance of the C/N ratio and double helical ribbon (DHR) impeller in the anaerobic co-digestion (AnCo-D) of sugar refining process (SRP) effluent and molasses-based distillery spent wash (DSW) for improved biogas production. Both SRP & DSW were mixed in different percentages to achieve an optimum C/N ratio. Further biomethane potential analysis of mixed feeds with different C/N ratios was performed.

View Article and Find Full Text PDF

High organofluorine concentrations in municipal wastewater affect downstream drinking water supplies for millions of Americans.

Proc Natl Acad Sci U S A

January 2025

Environmental Science & Engineering, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134.

Wastewater receives per- and polyfluoroalkyl substances (PFAS) from diverse consumer and industrial sources, and discharges are known to be a concern for drinking water quality. The PFAS family includes thousands of potential chemical structures containing organofluorine moieties. Exposures to a few well-studied PFAS, mainly perfluoroalkyl acids (PFAA), have been associated with increased risk of many adverse health outcomes, prompting federal drinking water regulations for six compounds in 2024.

View Article and Find Full Text PDF

The swift industrial expansion has posed significant environmental challenges, particularly in the context of water pollution. Industrial effluents consist of substantial amounts of harmful pollutants that enter the main rivers via various tapped and untapped drains/local water streams, causing alterations in their physical and chemical properties. This study investigated 153 grossly polluting industries (GPIs) that were identified to release their effluents into the main rivers through different drains within multiple sectors in the industrial zone of four northern states of India in 2023.

View Article and Find Full Text PDF

High production rates of chlorinated paraffins (CPs) and their widespread use resulted in a global contamination. Since 2017, short-chain CPs (SCCPs, C-C) are listed as persistent organic pollutants (POPs) in the Stockholm Convention. Technical CP mixtures contain hundreds of homologues and side products such as chlorinated olefins (COs), diolefins (CdiOs) and triolefins (CtriOs).

View Article and Find Full Text PDF

As a hot issue, the scientific and effective separation and extraction of heavy metal ions from complex industrial effluent deserves wide investigation. Copper is an important valuable heavy metal in industrial wastewater. Selective extraction of copper ion (Cu) from effluent not only alleviates the shortage of resources, but also has economic and social benefits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!