Phytohormones-induced senescence efficiently promotes the transport of cadmium from roots into shoots of plants: A novel strategy for strengthening of phytoremediation.

J Hazard Mater

College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China. Electronic address:

Published: April 2020

Due to the long growth period of plants, phytoremediation is time costly. Improving the accumulation of cadmium (Cd) in shoots of plants will promote the efficiency of phytoremediation. In this study, two senescence-relative phytohormones, abscisic acid (ABA) and salicylic acid (SA), were applied to strengthening phytoremediation of Cd by tall fescue (Festuca arundinacea S.). Under hydroponic culture, phytohormones treatment increased the Cd content of shoots 11.4-fold over the control, reaching 316.3 mg/kg (dry weight). Phytohormones-induced senescence contributes to the transport of heavy metals, and HMA3 was found to play a key role in this process. Additionally, this strategy could strengthen the accumulation of Cu and Zn in tall fescue shoots. Moreover, in soil pot culture, the strategy increased shoot Cd contents 2.56-fold over the control in tall fescue, and 2.55-fold over the control in Indian mustard (Brassica juncea L.), indicating its comprehensive adaptability and potential use in the field. In summary, senescence-induced heavy metal transport is developed as a novel strategy to strengthen phytoremediation. The strategy could be applied at the end of phytoremediation with an additional short duration (7 days) with comprehensive adaptability, and markedly strengthen the phytoremediation in the field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122080DOI Listing

Publication Analysis

Top Keywords

tall fescue
12
phytohormones-induced senescence
8
shoots plants
8
novel strategy
8
strengthening phytoremediation
8
strategy strengthen
8
comprehensive adaptability
8
strengthen phytoremediation
8
phytoremediation
7
strategy
5

Similar Publications

Tall fescue ( ) is a widely adopted forage and turf grass. This is partly due to a fungal endophyte, which confers both abiotic and biotic stress tolerance. Although PCR primers exist to test for endophyte presence, these were not designed to quantitatively analyze the amount of fungus in the plant.

View Article and Find Full Text PDF

Effects of Artificially Modified Microbial Communities on the Root Growth and Development of Tall Fescue in Nutrient-Poor Rubble Soil.

Plants (Basel)

November 2024

Xinjiang Uygur Autonomous Region Geology and Mineral Exploration and Development Bureau, Urumqi 830052, China.

The granite rubble soil produced through excavation during construction is nutrient-poor and has a simplified microbial community, making it difficult for plants to grow and increasing the challenges of ecological restoration. Recent studies have demonstrated that microbial inoculants significantly promote plant growth and are considered a potential factor influencing root development. Microorganisms influence root development either directly or indirectly, forming beneficial symbiotic relationships with plant roots.

View Article and Find Full Text PDF

Hydrogen sulfide (HS) functions as a signaling molecule affecting plant growth, development, and stress adaptation. Tall fescue (Festuca arundinacea Schreb.), a bioenergy crop, encounters significant challenges in agricultural production owing to low light by shading.

View Article and Find Full Text PDF

Winter wheat ( L.) is a significant forage source for livestock grazing in the Southern Great Plains (SGP). However, increasing input costs and changing climate conditions compel producers and researchers to search for alternative forage systems, such as cool-season perennials.

View Article and Find Full Text PDF

Although phytoremediation is more economical when compared with traditional physical and chemical soil remediation methods, it remains very expensive when considering the substantial area of the contaminated field. If the quantity of harvested residues can be reduced after each phytoremediation cycle, the practicability and commercial implementation of this environment friendly method can be improved. In this study, cadmium excretion on the leaf surface of Festuca arundinacea was evaluated under various blue and red light conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!