By using the available expression datasets of mRNAs and small RNAs, we constructed and compared the salt-responsive gene regulatory networks (GRNs) involving both transcriptional and post-transcriptional regulations between model plants rice and Arabidopsis. The salt-responsive GRNs involve the transcription factors (TFs), microRNAs (miRNAs) and their target genes. Here we describe 552 miRNA-target interactions (MTIs), 95 up-regulated TF-target interactions (TTIs) and 56 down-regulated TTIs in rice, while 332 MTIs, 138 up-regulated and 4 down-regulated TTIs in Arabidopsis. Interestingly, we observed the networks in rice are more complicated where target genes were enriched in rice development and growth, while more stress-related genes were detected in Arabidopsis networks. With the construction and comparison of GRNs between rice and Arabidopsis in response to salt stress, we can basically describe the differences of salt responsive mechanisms in two species: rice tends to respond slower and chooses to manipulate its development and growth to avoid salt stress, while Arabidopsis prefers to trigger a serious salt-defending genes to protect itself from stress. Our work provides the foundation for further exploring the molecular basis of plant salt response and the potential breeding practice by engineering the critical components in the networks in improving plant salt tolerance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiolchem.2019.107188 | DOI Listing |
Plants (Basel)
January 2025
The New Zealand Institute for Plant & Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand.
Calcium-dependent protein kinases (CPKs) are plant proteins that directly bind calcium ions before phosphorylating substrates involved in biotic and abiotic stress responses, as well as development. CPK3 () is involved with plant signaling pathways such as stomatal movement regulation, salt stress response, apoptosis, seed germination and pathogen defense. In this study, and its orthologues in relatively distant plant species such as rice (, monocot) and kiwifruit (, asterid eudicot) were analyzed in response to drought, bacteria, fungi, and virus infections.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550025, China.
Tartary buckwheat is a nutrient-rich pseudo-cereal whose starch contents, including amylose and amylopectin contents, and their properties hold significant importance for enhancing yield and quality. The granule-bound starch synthase (GBSS) is a key enzyme responsible for the synthesis of amylose, directly determining the amylose content and amylose-to-amylopectin ratio in crops. Although one has already been cloned, the genes at the genome-wide level have not yet been fully assessed and thoroughly analyzed in Tartary buckwheat.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China.
Food security is threatened by global warming, which also affects agricultural output. Various components of cells perceive elevated temperatures. Different signaling pathways in plants distinguish between the two types of temperature increases, mild warm temperatures and extremely hot temperatures.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
Abiotic stresses impose significant constraints on crop growth, development, and yield. However, the comprehensive characterization of the maize () () gene family under stress conditions remains limited. LOXs play vital roles in plant stress responses by mediating lipid oxidation and signaling pathways.
View Article and Find Full Text PDFGenes (Basel)
January 2025
Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA.
Background/objectives: Cold stress poses a significant threat to Asian rice cultivation, disrupting important physiological processes crucial for seedling establishment and overall plant growth. It is, thus, crucial to elucidate genetic pathways involved in cold stress tolerance response mechanisms.
Methods: We mapped , a ()-type homolog of rice, to a low-temperature seedling survivability (LTSS) QTL and used genomics, molecular genetics, and physiological assays to assess its role in plant resilience against low-temperature stress.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!