Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8040021PMC
http://dx.doi.org/10.1111/all.14188DOI Listing

Publication Analysis

Top Keywords

medical algorithm
4
algorithm diagnosis
4
diagnosis treatment
4
treatment eosinophilic
4
eosinophilic esophagitis
4
esophagitis children
4
medical
1
diagnosis
1
treatment
1
eosinophilic
1

Similar Publications

This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.

View Article and Find Full Text PDF

Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

Transfer learning aims to integrate useful information from multi-source datasets to improve the learning performance of target data. This can be effectively applied in genomics when we learn the gene associations in a target tissue, and data from other tissues can be integrated. However, heavy-tail distribution and outliers are common in genomics data, which poses challenges to the effectiveness of current transfer learning approaches.

View Article and Find Full Text PDF

Background: Cardiac magnetic resonance (CMR) is essential for diagnosing cardiomyopathy, serving as the gold standard for assessing heart chamber volumes and tissue characterization. Hemodynamic forces (HDF) analysis, a novel approach using standard cine CMR images, estimates energy exchange between the left ventricular (LV) wall and blood. While prior research has focused on peak or mean longitudinal HDF values, this study aims to investigate whether unsupervised clustering of HDF curves can identify clinically significant patterns and stratify cardiovascular risk in non-ischemic LV cardiomyopathy (NILVC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!