Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 980
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3077
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
High-throughput mass spectrometry (MS) metabolomics profiling of highly complex samples allows the comprehensive detection of hundreds to thousands of metabolites under a given condition and point in time and produces information-rich data sets on known and unknown metabolites. One of the main challenges is the identification and annotation of metabolites from these complex data sets since the number of authentic standards available for specialized metabolites is far lower than an account for the number of mass spectral features. Previously, we reported two novel tools, MetNet and MetCirc, for putative annotation and structural prediction on unknown metabolites using known metabolites as baits. MetNet employs differences between m/z values of MS1 features, which correspond to metabolic transformations, and statistical associations, while MetCirc uses MS/MS features as input and calculates similarity scores of aligned spectra between features to guide the annotation of metabolites. Here, we showcase the use of MetNet and MetCirc to putatively annotate metabolites and provide detailed instructions as to how those can be used. While our case studies are from plants, the tools find equal utility in studies on bacterial, fungal, or mammalian xenobiotic samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0239-3_12 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!