The 'Abundant-Centre Hypothesis' is a well-established but controversial hypothesis stating that the abundance of a species is highest at the centre of its range and decreases towards the edges, where conditions are unfavourable. As genetic diversity depends on population size, edge populations are expected to show lower intra-population genetic diversity than core populations, while showing high inter-population genetic divergence. Here, the genetic implications of the Abundant-Centre Hypothesis were tested on two coastal mussels from South Africa that disperse by means of planktonic larvae, the native Perna perna and the invasive Mytilus galloprovincialis. Genetic structure was found within P. perna, which, together with evidence from Lagrangian particle simulations, points to significant reductions in gene flow between sites. Despite this, the expected diversity pattern between centre and edge populations was not found for either species. We conclude that the genetic predictions of the Abundant-Centre Hypothesis are unlikely to be met by high-dispersal species with large population sizes, and may only become evident in species with much lower levels of connectivity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969206 | PMC |
http://dx.doi.org/10.1038/s41598-020-57474-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!