Phylosymbiosis across Deeply Diverging Lineages of Omnivorous Cockroaches (Order Blattodea).

Appl Environ Microbiol

Department of Microbiology, University of Georgia, Athens, Georgia, USA

Published: March 2020

The gut microbiome is shaped by both host diet and host phylogeny. However, separating the relative influence of these two factors over long periods of evolutionary time is often difficult. We conducted a 16S rRNA gene amplicon-based survey of the gut microbiome from 237 individuals and 19 species of omnivorous cockroaches from the order Blattodea. The order Blattodea represents an ancient lineage of insects that emerged over 300 million years ago, have a diverse gut microbiota, and have a typically gregarious lifestyle. All cockroaches shared a broadly similar gut microbiota, with 66 microbial families present across all species and 13 present in every individual examined. Although our network analysis of the cockroach gut microbiome showed a large amount of connectivity, we demonstrated that gut microbiota cluster strongly by host species. We conducted follow-up tests to determine if cockroaches exhibit phylosymbiosis, or the tendency of host-associated microbial communities to parallel the phylogeny of related host species. Across the full data set, gut microbial community similarity was not found to correlate with host phylogenetic distance. However, a weak but significant phylosymbiotic signature was observed using the matching cluster metric, which allows for localized changes within a phylogenetic tree that are more likely to occur over long evolutionary distances. This finding suggests that host phylogeny plays a large role in structuring the cockroach gut microbiome over shorter evolutionary distances and a weak but significant role in shaping the gut microbiome over extended periods of evolutionary time. The gut microbiome plays a key role in host health. Therefore, it is important to understand the evolution of the gut microbiota and how it impacts, and is impacted by, host evolution. In this study, we explore the relationship between host phylogeny and gut microbiome composition in omnivorous, gregarious cockroaches within the Blattodea order, an ancient lineage that spans 300 million years of evolutionary divergence. We demonstrate a strong relationship between host species identity and gut microbiome composition and found a weaker but significant role for host phylogeny in determining microbiome similarity over extended periods of evolutionary time. This study advances our understanding of the role of host phylogeny in shaping the gut microbiome over different evolutionary distances.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082566PMC
http://dx.doi.org/10.1128/AEM.02513-19DOI Listing

Publication Analysis

Top Keywords

gut microbiome
36
host phylogeny
20
gut microbiota
16
gut
14
order blattodea
12
host
12
periods evolutionary
12
evolutionary time
12
host species
12
evolutionary distances
12

Similar Publications

Causal association between gut microbiome and polycystic ovary syndrome: A bidirectional Mendelian randomization study.

Afr J Reprod Health

December 2024

Department of Gynecology and Obstetrics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China.

Through implementing a bidirectional Mendelian randomization (MR) study, the causal effects between gut microbiome and polycystic ovary syndrome (PCOS) were analyzed. Summary statistics for PCOS were acquired from the FinnGen consortium R8 release data, which included 27,943 cases and 162,936 controls. The inverse-variance weighting (IVW) method was adopted for analysis.

View Article and Find Full Text PDF

: Cannabidiol (CBD) is an approved treatment for childhood epilepsies and a candidate treatment for several other CNS disorders. However, it has poor oral bioavailability. We investigated the effect of a novel lipid formulation on its absorption in humans and on its tissue distribution in mice.

View Article and Find Full Text PDF

This review delves into the impact of benzo(a)pyrene (B(a)P), which is a toxic and pervasive polycyclic aromatic hydrocarbon (PAH) and known carcinogen, on the human health risk from a gut microbiome perspective. We retrieved the relevant articles on each PAH and summarized the reporting to date, with a particular focus on benzo(a)pyrene, which has been reported to have a high risk of gut microbiome-related harm. B(a)P exposure can compromise the homeostasis of the gut microbiota, leading to dysbiosis, a state of microbial imbalance.

View Article and Find Full Text PDF

Microplastics pollution in freshwater systems is attracting increasing attention. However, our knowledge of its combined toxicity with heavy metals is scarce. In this study, was used as the model animal to study the combined poisoning mechanism of cadmium or microplastics on the digestive systems of tadpoles in freshwater.

View Article and Find Full Text PDF

Background: Since the gut microbiota is important for athlete health and performance, its optimization is increasingly gaining attention in sports nutrition, for example, with whole fermented foods. Sauerkraut is a traditional fermented food rich in pro-, pre-, and postbiotics, which has not yet been investigated in the field of sports nutrition.

Methods: To determine whether sauerkraut could be used for gut microbiota optimization in sports nutrition, a proof-of-concept study was conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!