A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Respiratory Physiology of Lactococcus lactis in Chemostat Cultures and Its Effect on Cellular Robustness in Frozen and Freeze-Dried Starter Cultures. | LitMetric

Respiratory Physiology of Lactococcus lactis in Chemostat Cultures and Its Effect on Cellular Robustness in Frozen and Freeze-Dried Starter Cultures.

Appl Environ Microbiol

Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden

Published: March 2020

In this study, we used chemostat cultures to analyze the quantitative effects of the specific growth rate and respiration on the metabolism in CHCC2862 and on the downstream robustness of cells after freezing or freeze-drying. Under anaerobic conditions, metabolism remained homofermentative, although biomass yields varied with the dilution rate (). In contrast, metabolism shifted with the dilution rate under respiration-permissive conditions. At  = 0.1 h, no lactate was produced, while lactate formation increased with higher dilution rates. Thus, a clear metabolic shift was observed, from flavor-forming respiratory metabolism at low specific growth rates to mixed-acid respiro-fermentative metabolism at higher specific growth rates. Quantitative analysis of the respiratory activity, lactose uptake rate, and metabolite production rates showed that aerobic acetoin formation provided most of the NADH consumed in respiration. Moreover, the maintenance-associated lactose consumption under respiration-permissive conditions was only 10% of the anaerobic value, either due to higher respiratory yield of ATP on consumed lactose or due to lower maintenance-related ATP demand. The cultivation conditions also affected the quality of the starter cultures produced. Cells harvested under respiration-permissive conditions at  = 0.1 h were less robust after freeze-drying and had lower acidification activity for subsequent milk acidification, whereas respiration-permissive conditions at the higher dilution rates led to robust cells that performed equally well or better than anaerobic cells. is used in large quantities by the food and biotechnology industries. can use oxygen for respiration if heme is supplied in the growth medium. This has been extensively studied in batch cultures using various mutants, but quantitative studies of how the cell growth affects respiratory metabolism, energetics, and cell quality are surprisingly scarce. Our results demonstrate that the respiratory metabolism of is remarkably flexible and can be modulated by controlling the specific growth rate. We also link the physiological state of cells during cultivation to the quality of frozen or freeze-dried cells, which is relevant to the industry that may lack understanding of such relationships. This study extends our knowledge of respiratory metabolism in and its impact on frozen and freeze-dried starter culture products, and it illustrates the influence of cultivation conditions and microbial physiology on the quality of starter cultures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7054105PMC
http://dx.doi.org/10.1128/AEM.02785-19DOI Listing

Publication Analysis

Top Keywords

specific growth
16
respiration-permissive conditions
16
respiratory metabolism
16
frozen freeze-dried
12
starter cultures
12
chemostat cultures
8
freeze-dried starter
8
growth rate
8
metabolism
8
dilution rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!