Chemosensory epithelial cells (EpCs) are specialized cells that promote innate type 2 immunity and protective neurally mediated reflexes in the airway. Their effector programs and modes of activation are not fully understood. Here, we define the transcriptional signature of two choline acetyltransferase-expressing nasal EpC populations. They are found in the respiratory and olfactory mucosa and express key chemosensory cell genes including the transcription factor , the cation channel , and the cytokine Moreover, these cells share a core transcriptional signature with chemosensory cells from intestine, trachea and thymus, and cluster with tracheal brush cells (BrCs) independently from other respiratory EpCs, indicating that they are part of the brush/tuft cell family. Both nasal BrC subsets express high levels of transcripts encoding cysteinyl leukotriene (CysLT) biosynthetic enzymes. In response to ionophore, unfractionated nasal BrCs generate CysLTs at levels exceeding that of the adjacent hematopoietic cells isolated from naïve mucosa. Among activating receptors, BrCs express the purinergic receptor P2Y2. Accordingly, the epithelial stress signal ATP and aeroallergens that elicit ATP release trigger BrC CysLT generation, which is mediated by the P2Y2 receptor. ATP- and aeroallergen-elicited CysLT generation in the nasal lavage is reduced in mice lacking Pou2f3, a requisite transcription factor for BrC development. Last, aeroallergen-induced airway eosinophilia is reduced in BrC-deficient mice. These results identify a previously undescribed BrC sensor and effector pathway leading to generation of lipid mediators in response to luminal signals. Further, they suggest that BrC sensing of local damage may provide an important sentinel immune function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176051 | PMC |
http://dx.doi.org/10.1126/sciimmunol.aax7224 | DOI Listing |
J Colloid Interface Sci
December 2024
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom. Electronic address:
Understanding the architecture and mechanism of assembly of polyelectrolyte-nucleic acid complexes is critical to the rational design of their performance for gene delivery. Surface-initiated polymer brushes were recently found to be particularly effective at delivering oligonucleotides and maintaining high knock down efficiencies for prolonged periods of time, in highly proliferative cells. However, what distinguishes their binding capacity for oligonucleotides from that of larger therapeutic macromolecules remains unknown.
View Article and Find Full Text PDFPoult Sci
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry/College of Animal Science, South China Agricultural University/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control, Guangzhou, 510642, China. Electronic address:
As sensors in the gut, tuft cells integrate a complex array of luminal signals to regulate the differentiation fate of intestinal stem cells (ISCs), which trigger a loop of tuft cell-ISC-goblet cell after parasitic infection. As a plant-derived alkaloid, Matrine plays a prominent role for standardizing ISC functions in Eimeria necatrix (EN)-exposed chicks. In this study, we investigated the modulation effects of Matrine on the specific intestinal epithelial cell loop in EN-exposed chicks in vivo and intestinal organoids (IOs) ex vivo.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Anatomy and Cell Biology, Saarland University, Homburg, Germany.
Tracheal tuft cells shape immune responses in the airways. While some of these effects have been attributed to differential release of either acetylcholine, leukotriene C4 and/or interleukin-25 depending on the activating stimuli, tuft cell-dependent mechanisms underlying the recruitment and activation of immune cells are incompletely understood. Here we show that Pseudomonas aeruginosa infection activates mouse tuft cells, which release ATP via pannexin 1 channels.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Hematology, Nephrology, and Rheumatology, Graduate School of Medicine, Akita University, Akita, Japan.
Various tubular diseases in patients with multiple myeloma (MM) are caused by monoclonal immunoglobulin light chains (LCs). However, the physicochemical characteristics of the disease-causing LCs contributing to the onset of MM-associated tubular diseases remain unclear. We herein report a rare case of MM-associated combined tubulopathies: non-crystalline light chain proximal tubulopathy (LCPT) and crystalline light chain cast nephropathy (LCCN).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!