Natural products (NPs) are considered as a cornerstone for the generation of bioactive leads in drug discovery programs. However, one of the major limitations of NP drug discovery program is "rediscovery" of known compounds, thereby hindering the rate of drug discovery efficiency. Therefore, in recent years, to overcome these limitations, a great deal of attention has been drawn towards understanding the role of microorganisms' co-culture in inducing novel chemical entities. Such induction could be related to activation of genes which might be silent or expressed at very low levels (below detection limit) in pure-strain cultures under normal laboratory conditions. In this review, chemical diversity of compounds isolated from microbial co-cultures, is discussed. For this purpose, chemodiversity has been represented as a chemical-structure network based on the "Tanimoto Structural Similarity Index". This highlights the huge structural diversity induced by microbial co-culture. In addition, the current trends in microbial co-culture research are highlighted. Finally, the current challenges (1 - induction monitoring, 2 - reproducibility, 3 - growth time effect and 4 - up-scaling for isolation purposes) are discussed. The information in this review will support researchers to design microbial co-culture strategies for future research efforts. In addition, guidelines for co-culture induction reporting are also provided to strengthen future reporting in this NP field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biotechadv.2020.107521 | DOI Listing |
Cell Rep
January 2025
Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland. Electronic address:
Polycomb repressive complex 2 (PRC2), composed of the core subunits EED, SUZ12, and either EZH1 or EZH2, is critical for maintaining cellular identity in multicellular organisms. PRC2 deposits H3K27me3, which is thought to recruit the canonical form of PRC1 (cPRC1) to promote gene repression. Here, we show that EZH1-PRC2 and cPRC1 are the primary Polycomb complexes on target genes in non-dividing, quiescent cells.
View Article and Find Full Text PDFInt J Geriatr Psychiatry
January 2025
Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Background: Alzheimer's disease (AD) is characterized by impaired inhibitory circuitry and GABAergic dysfunction, which is associated with reduced fast brain oscillations in the gamma band (γ, 30-90 Hz) in several animal models. Investigating such activity in human patients could lead to the identification of novel biomarkers of diagnostic and prognostic value. The current study aimed to test a multimodal "Perturbation-based" transcranial Alternating Current Stimulation-Electroencephalography (tACS)-EEG protocol to detect how responses to tACS in AD patients correlate with patients' clinical phenotype.
View Article and Find Full Text PDFExp Hematol Oncol
January 2025
Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430300, China.
Immune checkpoint therapies have spearheaded drug innovation over the last decade, propelling cancer treatments toward a new era of precision therapies. Nonetheless, the challenges of low response rates and prevalent drug resistance underscore the imperative for a deeper understanding of the tumor microenvironment (TME) and the pursuit of novel targets. Recent findings have revealed the profound impacts of biomechanical forces within the tumor microenvironment on immune surveillance and tumor progression in both murine models and clinical settings.
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China.
The Kirsten rat sarcoma viral oncogene homolog (KRAS) protein plays a key pathogenic role in oncogenesis, cancer progression, and metastasis. Numerous studies have explored the role of metabolic alterations in KRAS-driven cancers, providing a scientific rationale for targeting metabolism in cancer treatment. The development of KRAS-specific inhibitors has also garnered considerable attention, partly due to the challenge of acquired treatment resistance.
View Article and Find Full Text PDFMol Divers
January 2025
School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, People's Republic of China.
The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!