AI Article Synopsis

  • The study investigates how fluid shear stress (FSS) affects endothelial cell injury through the protein kinase C alpha (PKCα) pathway, focusing on the proteins VE-cadherin and p120-catenin.
  • A T chamber system was used to expose human umbilical vein endothelial cells (HUVECs) to FSS for different durations, revealing changes in cell shape, density, and protein expression levels.
  • Results indicated that FSS increases phosphorylated PKCα and NF-κB levels while decreasing p120ctn and VE-cadherin expression, suggesting that PKCα may play a critical role in regulating cell integrity under mechanical stress.

Article Abstract

Objective: The present study aimed to characterize the mechanism of fluid shear stress (FSS)-induced endothelial cell (EC) injury via protein kinase C alpha (PKCα)-mediated vascular endothelial cadherin (VE-cadherin) and p120-catenin (p120ctn) expression.

Methods: We designed a T chamber system that produced stable FSS on ECs in vitro. Human umbilical vein endothelial cells (HUVECs) in which PKCα was knocked down and normal HUVECs were cultured on the coverslips. FSS was impinged on these 2 types of ECs for 0 hours and 6 hours. The morphology and density of HUVECs were evaluated, and expression levels of phosphorylated PKCα, p120-catenin (p120ctn), VE-cadherin, phosphorylated p120ctn at S879 (p-S879p120ctn), and nuclear factor kappa B (NF-κB) were analyzed by Western blot.

Results: HUVECs exposed to FSS were characterized by a polygonal shape and decreased cell density. The phosphorylated PKCα level was increased under FSS at 6 hours (P < 0.05). In normal HUVECs during FSS, p120ctn and VE-cadherin were decreased, whereas p-S879p120ctn and NF-κB were increased, at 6 hours (P < 0.05). In HUVECs after PKCα knockdown, p120ctn and VE-cadherin were not significantly changed (P > 0.05), p-S879p120ctn was undetectable, but NF-κB was decreased (P < 0.05) at 6 hours.

Conclusions: The possible mechanism of FSS-induced EC injury may be as follows: 1) PKCα induces low expression of p120ctn, which leads to activation of NF-κB and degradation of VE-cadherin; 2) PKCα-mediated phosphorylation of p120ctn at S879 disrupts p120ctn binding to VE-cadherin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wneu.2020.01.028DOI Listing

Publication Analysis

Top Keywords

p120ctn ve-cadherin
12
fluid shear
8
shear stress
8
endothelial cell
8
cell injury
8
injury protein
8
protein kinase
8
vascular endothelial
8
endothelial cadherin
8
p120ctn
8

Similar Publications

Role of the blood-spinal cord barrier: An adheren junction regulation mechanism that promotes chronic postsurgical pain.

Biochem Biophys Res Commun

June 2023

Department of Anesthesiology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China. Electronic address:

Chronic postsurgical pain (CPSP) is a serious postoperative complication with high incidence, and its pathogenesis involves neuroimmune interactions and the breakdown of the blood-spinal cord barrier (BSCB), the decreased level of adheren junction (AJ)-related proteins is an important cause of BSCB injury. Vascular endothelial-cadherin (VE-cadherin) and p120 catenin (p120) constitute the endothelial barrier adheren junction. The Src/p120/VE-cadherin pathway is involved in the regulation of the endothelial barrier function.

View Article and Find Full Text PDF

Objective: The pedicled greater omentum, when applied onto stressed hearts using omentopexy, has been shown to be protective in humans and animals. The mechanisms underlying cardioprotection using omentopexy remain elusive. This study examined whether macrophage-mediated angiogenesis accounts for the cardioprotective effect of omentopexy in mice.

View Article and Find Full Text PDF

Ruscogenin attenuates sepsis-induced acute lung injury and pulmonary endothelial barrier dysfunction via TLR4/Src/p120-catenin/VE-cadherin signalling pathway.

J Pharm Pharmacol

June 2021

State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Pharmacology of Chinese Material Medica, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, PR China.

Objectives: Sepsis-associated acute lung injury (ALI) occurs with the highest morbidity and carries the highest mortality rates among the pathogenies of ALI. Ruscogenin (RUS) has been found to exhibit anti-inflammation property and rescue lipopolysaccharide-induced ALI, but little is known about its role in sepsis-triggered ALI. The aim of this study was to investigate the potential role of RUS in sepsis-induced ALI and the probable mechanism.

View Article and Find Full Text PDF

Tissue morphogenesis requires dynamic intercellular contacts that are subsequently stabilized as tissues mature. The mechanisms governing these competing adhesive properties are not fully understood. Using gain- and loss-of-function approaches, we tested the role of p120-catenin (p120) and VE-cadherin (VE-cad) endocytosis in vascular development using mouse mutants that exhibit increased (VE-cadGGG/GGG) or decreased (VE-cadDEE/DEE) internalization.

View Article and Find Full Text PDF

MicroRNAs (miRs) regulate complex processes, including angiogenesis, by targeting multiple mRNAs. miR-24-3p-3p directly represses eNOS, GATA2, and PAK4 in endothelial cells (ECs), thus inhibiting angiogenesis during development and in the infarcted heart. miR-24-3p is widely expressed in cardiovascular cells, suggesting that it could additionally regulate angiogenesis by acting on vascular mural cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!