This study of medial gastrocnemius (MG) muscle and motor units (MUs) after spinal cord hemisection and deafferentation (HSDA) in adult cats, asked 1) whether the absence of muscle atrophy and unaltered contractile speed demonstrated previously in HSDA-paralyzed peroneus longus (PerL) muscles, was apparent in the unloaded HSDA-paralyzed MG muscle, and 2) how ankle unloading impacts MG muscle and MUs after dorsal root sparing (HSDA-SP) with foot placement during standing and locomotion. Chronic isometric contractile forces and speeds were maintained for up to 12 months in all conditions, but fatigability increased exponentially. MU recordings at 8-11½ months corroborated the unchanged muscle force and speed with significantly increased fatigability; normal weights of MG muscle confirmed the lack of disuse atrophy. Fast MUs transitioned from fatigue resistant and intermediate to fatigable accompanied by corresponding fiber type conversion to fast oxidative (FOG) and fast glycolytic (FG) accompanied by increased GAPDH enzyme activity in absolute terms and relative to oxidative citrate synthase enzyme activity. Myosin heavy chain composition, however, was unaffected. MG muscle behaved like the PerL muscle after HSDA with maintained muscle and MU contractile force and speed but with a dramatic increase in fatigability, irrespective of whether all the dorsal roots were transected. We conclude that reduced neuromuscular activity accounts for increased fatigability but is not, in of itself, sufficient to promote atrophy and slow to fast conversion. Position and relative movements of hindlimb muscles are likely contributors to sustained MG muscle and MU contractile force and speed after HSDA and HSDA-SP surgeries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2020.113201DOI Listing

Publication Analysis

Top Keywords

force speed
12
muscle
10
medial gastrocnemius
8
spinal cord
8
cord hemisection
8
increased fatigability
8
enzyme activity
8
muscle contractile
8
contractile force
8
gastrocnemius muscles
4

Similar Publications

Background And Aims: High contact stresses involving the hip have been shown to increase the risk of developing hip osteoarthritis (OA). Although several risk factors have been identified for OA, a holistic approach to predicting contributed factors toward increased hip contact stresses have not been explored. This study was conducted to comprehensively understand the effects of physical activity on high hip contact stress as predisposing factors of OA.

View Article and Find Full Text PDF

Evaluation of Retentive Forces in Three Types of Removable Partial Denture Framework Materials: An In Vitro Study.

Cureus

December 2024

Dentistry, Kurdistan Higher Council of Medical Specialties, Erbil, IRQ.

Introduction The utilization of Computer-Aided Design and Computer-Aided Manufacturing (CAD/CAM) technology in the production of polyetheretherketone (PEEK) and acetal frameworks enhances the precision and stability of partial denture frameworks. This study evaluates the retentive forces of CAD/CAM-fabricated PEEK, acetal, and cobalt-chromium (Co-Cr) frameworks in removable partial dentures (RPDs). Methods Forty-five frameworks were fabricated (15 each of PEEK, acetal, and Co-Cr) and tested for retentive forces using a universal testing machine at a crosshead speed of 5 mm/min.

View Article and Find Full Text PDF

High-speed atomic force microscopy reveals opposite traffic of processive chitinases impairs α-chitin biodegradation.

Carbohydr Polym

March 2025

State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:

The antiparallelly organized α-chitin exhibits greater thermodynamic stability and is more recalcitrant to degradation than its parallel allomorph, β-chitin, thereby impeding the efficient utilization of this natural resource. The processive chitinases usually provide the majority of catalytic potential for chitin biodegradation. Using high-speed atomic force microscopy (HS-AFM), we revealed that the opposite traffic of OfChi-h, the only processive chitinase involved in chitin biodegradation in the insect Ostrinia furnacalis, is a key factor that significantly affects α-chitin degradation.

View Article and Find Full Text PDF

Up-scaling on a rotary tablet press by increasing turret speed can have a negative effect on die filling performance, as the dies have less time to be filled, leading to high tablet weight variability. For this reason, double-tip tooling is investigated, where a punch contains 2 tips instead of 1, doubling the throughput without the need to increase turret speed. However, when using multi-tip punches, one has to bear in mind that punch responses, e.

View Article and Find Full Text PDF

Porous earth materials exhibit large-scale deformation patterns, such as deformation bands, which emerge from complex small-scale interactions. This paper introduces a cross-diffusion framework designed to capture these multiscale, multiphysics phenomena, inspired by the study of multi-species chemical systems. A microphysics-enriched continuum approach is developed to accurately predict the formation and evolution of these patterns.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!