Maillard reaction (MR) is one of the most important chemical reactions in the food science domain with a long history of more than 100 years. As for ultrasound-assisted MR (US-MR), it has gradually drawn attention in a recent decade. Purpose of this paper is to provide a systematic review on recent advances of US-MR in model systems, glycation of protein, and food processing. Fundamental studies on simple MR model systems (i.e. reducing sugar and amino acid) have reported a promoted generation of colored and volatile MR products (MRPs). Critical steps influenced by US and possible mechanisms have been elucidated simultaneously. Other studies focused on modification of proteins which undergoes a glycation between proteins and saccharides as the initial stage of MR. Since the MR rate is extremely low in the presence of protein and saccharide, US becomes a promising mean of promoting the glycation. As a result, a number of functional properties of glycated protein obtained by US are significantly promoted, which extend their utilization in the food industry. The rest of studies reviewed in this article are concentrated on applying US to process real foods. Many attributes changed during US-assisted processing are induced by MR. Positive aspects brought by the promoted US-MR include enhanced antioxidant capacity and organoleptic properties (e.g. desirable color, low bitterness, enhanced flavor, etc.), as well as inhibited hazards (e.g. advanced glycation end-products, acrylamide, etc.) formed in the processed foods. Meanwhile, the promoted MR by US may also inevitably bring some negative aspects to the processed foods due to unfavored yellowish/browning colors, off-flavors and hazard components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2019.104844 | DOI Listing |
Food Chem
January 2025
National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory of Agri-food Resources and High-value Utilization, Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China. Electronic address:
Global high consumption of fried potatoes is driven by appealing taste and edible convenience. However, the occurrence of Maillard reaction hazardous products (MRHPs) and joint control recipes have scarcely been concerned. We aim to reveal and predict how fish oil treatment for potato slices reduces simultaneous formation of typical MRHPs in air-based thermal processed potato chips.
View Article and Find Full Text PDFAm J Clin Nutr
January 2025
Department of Human Biology, NUTRIM Institute of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre+, Maastricht, the Netherlands. Electronic address:
Background: Industrial processing and storage of milk products can strongly increase protein glycation level. Previously, we have reported that ingestion of highly glycated milk protein attenuates the post-prandial rise in plasma lysine concentrations when compared to the ingestion of an equivalent amount of milk protein with a low glycation level. Whether the attenuated increase in plasma lysine availability is attributed to compromised protein digestion and subsequent lysine absorption remains to be established.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China.
γ-l-Glutamyl-S-allyl-l-cysteine (GSAC) is renowned for its flavor-modifying effects and beneficial biological activities. However, the level of GSAC decreases significantly during the processing of black garlic, and the pathways and degradation products resulting from this decline remain unclear. To investigate the potential transformation mechanisms of GSAC in black garlic, simulation systems for thermal decomposition, Maillard reactions, and enzymatic hydrolysis were established.
View Article and Find Full Text PDFFood Chem
January 2025
Department of Physiology, The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117593, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore; Institute of Bioengineering and Bioimaging (IBB), Agency for Science, Technology and Research (A*STAR), Singapore; Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore; CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, Singapore 138602, Singapore. Electronic address:
Cultivated meats are typically hybrids of animal cells and plant proteins, but their high production costs limit their scalability. This study explores a cost-effective alternative by hypothesizing that controlling the Maillard and lipid thermal degradation reactions in pure cells can create a meaty aroma that could be extracted from minimal cell quantities. Using spontaneously immortalized porcine myoblasts and fibroblasts adapted to suspension culture with a 1 % serum concentration, we developed a method to isolate flavor precursors via freeze-thawing.
View Article and Find Full Text PDFMolecules
January 2025
Department of Food Biofunctionality (140b), Institute of Nutritional Sciences, University of Hohenheim, D-70599 Stuttgart, Germany.
Phenolic compounds have antiglycation activity, but the changes occurring during thermal treatment (TT) in these activities are not completely understood. The effects of the extraction conditions of (poly)phenols from fruits, before and after TT, on their antioxidant and antiglycation effects were assessed. (Poly)phenol-enriched extracts (PEEs) from raw and TT (90 °C, 1 h) were extracted using three solvent mixtures (ethanol/water/acetic acid) with increasing water content (0, 24, and 49%) and three solvent-to-solid ratios (5, 10, and 20 mL/g).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!