Background: Patients with schizophrenia make more errors than healthy subjects in the antisaccade task. In this paradigm, participants are required to inhibit a reflexive saccade to a target and to select the correct action (a saccade in the opposite direction). While the precise origin of this deficit is not clear, it has been connected to aberrant dopaminergic and cholinergic neuromodulation.
Methods: To study the impact of dopamine and acetylcholine on inhibitory control and action selection, we administered two selective drugs (levodopa 200 mg/galantamine 8 mg) to healthy volunteers (N = 100) performing the antisaccade task. The computational model SERIA (stochastic early reaction, inhibition, and late action) was employed to separate the contribution of inhibitory control and action selection to empirical reaction times and error rates.
Results: Modeling suggested that levodopa improved action selection (at the cost of increased reaction times) but did not have a significant effect on inhibitory control. By contrast, according to our model, galantamine affected inhibitory control in a dose-dependent fashion, reducing inhibition failures at low doses and increasing them at higher levels. These effects were sufficiently specific that the computational analysis allowed for identifying the drug administered to an individual with 70% accuracy.
Conclusions: Our results do not support the hypothesis that elevated tonic dopamine strongly impairs inhibitory control. Rather, levodopa improved the ability to select correct actions. However, inhibitory control was modulated by cholinergic drugs. This approach may provide a starting point for future computational assays that differentiate neuromodulatory abnormalities in heterogeneous diseases like schizophrenia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bpsc.2019.10.011 | DOI Listing |
Adv Biotechnol (Singap)
March 2024
College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong, China.
Decapod iridovirus 1 (DIV1) poses a major challenge to sustainable shrimp farming and poses a serious hazard to aquaculture industry. This study investigated the complex interaction between DIV1 infection and water temperature, focusing on the effect of high temperature on DIV1 infection due to Penaeus monodon. Using models of latent and acute infection, the study revealed the response of P.
View Article and Find Full Text PDFWater Sci Technol
January 2025
Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora (ITSON), 5 de Febrero 818 sur, Ciudad Obregón, Sonora 85000, México E-mail:
Granular activated carbon (GAC) and GAC modified with anthraquinone-2-sulfonate (AQS) were used as conductive materials during the anaerobic digestion of swine wastewater (SW). The electron transfer capacity (ETC) in the GAC-AQS was 2.1-fold higher than the unmodified GAC.
View Article and Find Full Text PDFJ Anus Rectum Colon
January 2025
Department of Infectious Diseases, St. Marianna University School of Medicine, Kawasaki, Japan.
Fever and diarrhea are the common symptoms of infection (CDI); however, pseudomembranous enteritis, megacolonization, and paralytic ileus have been observed in severe cases. spores are resistant to several types of disinfectants. Thus, they are often the causative pathogens of healthcare-associated infections.
View Article and Find Full Text PDFBrain Commun
January 2025
Department of Neurological Surgery, University of Louisville, Louisville, KY 40202, USA.
The subthalamic nucleus is thought to play a crucial role in controlling impulsive actions. Networked among the basal ganglia and receiving input from several cortical areas, the subthalamic nucleus is well positioned to influence action selection when faced with competing and conflicting action outcomes. The purpose of this study was to test the dissociable roles of the dorsal and ventral aspects of the subthalamic nucleus during action conflict in patients with Parkinson's disease undergoing intraoperative neurophysiological recording and to explore a potential mechanism for this inhibitory control.
View Article and Find Full Text PDFFront Mol Neurosci
January 2025
Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
Introduction: The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!