Hydrolysis of lignocellulosic materials into simple sugar plays an important role in biorefinery. Hemicellulosic sugars from the hydrolysis of lignocellulosic materials could be used in xylitol production. However, xylanase activity during hydrolysis process is affected by activators and inhibitors that may present in the reaction system. The pretreatment process was reported to produce compounds that may affect the enzymatic hydrolysis process, such as furans, aliphatic acid, and aromatics. The purpose of this study was to investigate the inhibition effect of these potential inhibitors on xylanase activity. Three groups of potential inhibitors were evaluated including, furan, aliphatic acid, and hydrolysis-fermentation products. The result showed that ethanol, vanillin, and formic acid gave the highest inhibition effect from each group. Ethanol competed with xylanase competitively. Vanillin showed non-competitive inhibition. Formic acid performed mixed-inhibition by reducing maximum hydrolysis rate and giving varied Michaelis constant values at different concentrations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2020.122740 | DOI Listing |
Int J Biol Macromol
January 2025
College of Forestry, Henan Agricultural University, Zhengzhou 450046, China. Electronic address:
In this study, we fully sequenced and analyzed the genome of strain 12219 and identified it as Streptomyces thermocarboxydus. The genome contained a single linear chromosome, 6,950,031 bp in size, with a GC content of 72.21 %.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Engineering, Akdeniz University, 07058 Antalya, Turkey. Electronic address:
This study aimed to enhance inulinase production from agricultural biomass pretreated with deep eutectic solvents (DES) using Aspergillus niger A42 (ATCC 204447). Barley husk (BH), wheat bran (WB), and oat husk (OH) were selected as substrates and were pretreated using different molar ratios of choline chloride: glycerol (ChCl: Gly) and choline chloride: acetic acid (ChCl: AA). DES pretreatment was followed by dilute sulfuric acid hydrolysis.
View Article and Find Full Text PDFPrep Biochem Biotechnol
January 2025
Centro Universitario Municipal de Taguasco "Enrique José Varona", Universidad de Sancti Spíritus "José Martí Pérez", Sancti Spíritus, Cuba.
The biomethanization of lignocellulosic wastes remains an inefficient and complex process due to lignin structures that hinder the hydrolysis step, therefore, some treatments are required. This work describes the addition of an enriched microbial consortium in the biomethanization of rice straw. The experiment was carried out in lab batch reactors following two strategies: (i) pretreatment of rice straw for 48 h using the enriched microbial consortium (dilution 1:100), and (ii) addition of this enriched microbial consortium (dilution 1:100) directly to the anaerobic reactors (bioaugmentation).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, PO BOX 15551, Al Ain, United Arab Emirates. Electronic address:
This study provides insights into nanocellulose production using 1-butyl-3-methylimidazolium hydrogen sulphate ([Bmim]HSO) as a green solvent, utilizing cellulose derived from date palm waste. Critical hydrolysis parameters were optimized through analysis of variance and response surface methodology. The predicted nanocellulose yield (Y) followed a quadric equation represented by Y=55.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!