Stacked Bt Proteins Pose No New Risks to Nontarget Arthropods.

Trends Biotechnol

Agroscope, Research Division Agroecology and Environment, Zurich, Switzerland.

Published: March 2020

Concerns have been raised that multiple insecticidal proteins produced by genetically engineered (GE) crops may interact unexpectedly and pose new threats to biodiversity and nontarget organisms. We reviewed the literature to assess whether this concern is justified and whether the current regulatory framework needs to be adapted to address this concern.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tibtech.2019.12.001DOI Listing

Publication Analysis

Top Keywords

stacked proteins
4
proteins pose
4
pose risks
4
risks nontarget
4
nontarget arthropods
4
arthropods concerns
4
concerns raised
4
raised multiple
4
multiple insecticidal
4
insecticidal proteins
4

Similar Publications

The growing demand for biological products drives many efforts to maximize expression of heterologous proteins. Advances in high-throughput sequencing can produce data suitable for building sequence-to-expression models with machine learning. The most accurate models have been trained on one-hot encodings, a mechanism-agnostic representation of nucleotide sequences.

View Article and Find Full Text PDF

Localized Nanopore Fabrication in Silicon Nitride Membranes by Femtosecond Laser Exposure and Subsequent Controlled Breakdown.

ACS Appl Mater Interfaces

January 2025

Division of Micro and Nanosystems (MST), School of Electrical Engineering and Computer Science (EECS), KTH Royal Institute of Technology, Stockholm SE-10044, Sweden.

Controlled breakdown has emerged as an effective method for fabricating solid-state nanopores in thin suspended dielectric membranes for various biomolecular sensing applications. On an unpatterned membrane, the site of nanopore formation by controlled breakdown is random. Nanopore formation on a specific site on the membrane has previously been realized using local thinning of the membrane by lithographic processes or laser-assisted photothermal etching under immersion in an aqueous salt solution.

View Article and Find Full Text PDF

Atomistic Insights Into Interaction of Doxorubicin With DNA: From Duplex to Nucleosome.

J Comput Chem

January 2025

Regional Center of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Olomouc, Czech Republic.

Doxorubicin (DOX) is a widely used chemotherapeutic agent known for intercalating into DNA. However, the exact modes of DOX interactions with various DNA structures remain unclear. Using molecular dynamics (MD) simulations, we explored DOX interactions with DNA duplexes (dsDNA), G-quadruplex, and nucleosome.

View Article and Find Full Text PDF

Identification and analysis of repetitive elements (motifs) in DNA, RNA, and protein macromolecules is an important step in studying structure and functions of these biopolymers. Functional role of NA-BSE (non-adjacent base-stacking element, a widespread tertiary structure motif in various RNAs) in RNA-RNA interactions at various stages of the ribosome function during translation has been investigated in this work. Motifs of this type have been described to date that are reversibly formed during mRNA decoding, moving of the ribosome subunits relative to each other, and moving mRNA and tRNA along the ribosome during translocation.

View Article and Find Full Text PDF

2-Ethylhexyl diphenyl phosphate (EHDPP) is a replacement flame-retardant commonly found in several environmental matrices and human biospecimens. Although some adverse effects of EHDPP have been identified, the endocrine-disrupting effects of EHDPP and its key metabolites on the human estrogen receptor (ER) are largely unknown. Herein, we report for the first time that EHDPP, at concentrations found in the environment and humans, significantly promoted estrogenic activity and synergized with 17β-estradiol-induced ER transactivation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!