This work describes an eco-friendly and sustainable technique for the synthesis of silver nanoparticles (nAg), where chitosan-poly(3-hydroxybutyrate) polymer conjugate (Chit-PHB) acts as a reducing and stabilizing material. The ensuing nanoparticles show an exceptional catalytic activity in the reduction of 4-nitrophenol to 4-aminophenol. nAg were characterized by several techniques, i.e. SEM and TEM-EDX, to confirm their production, size and morphology. Furthermore, infrared spectroscopy analysis proved the presence of a Chit-PHB coating on the nAg. The excellent catalytic properties of the nAg-Chit-PHB was discernible when the activity parameter (κ) normalized by the specific surface area (SSA) of the nanoparticles was taken into consideration; normalization of κ by the SSA is a vital parameter for the assessment of the accessibility to the surface area of particles. Herein synthesized Ag nanoparticles, as far as we know, exhibited the fastest reaction kinetics of 4-nitrophenol reduction compared to the silver nanoparticles reported in the literature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2019.115806 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!