Background: In the bovine placenta, intimate fetomaternal contacts are restricted to discrete placentomes. Here, widely branched fetal chorionic villi interdigitate with corresponding maternal caruncular crypts. The fetal trophoblast epithelium covering the chorionic villi consists of approximately 80% uninucleate trophoblast cells (UTCs) and 20% binuclear trophoblast giant cells (TGCs). The weakly invasive TGCs migrate toward the caruncle epithelium and eventually fuse with individual epithelial cells to form short-lived fetomaternal hybrid cells. In this way, molecules of fetal origin are transported across the placental barrier and released into the maternal compartment. The UTC/TGC ratio in the trophoblast remains almost constant because approximately as many new TGCs are produced from UTCs as are consumed by the fusions. The process of developing TGCs from UTCs was insufficiently understood. Therefore, we aimed to detect differentially expressed genes (DEGs) between UTCs and TGCs and identify molecular functions and biological processes regulated by DEGs.
Results: We analyzed gene expression patterns in virtually pure UTC and TGC isolates using gene arrays and detected 3193 DEGs (p < 0.05; fold change values < - 1.5 or > 1.5). Of these DEGs, 1711 (53.6%) were upregulated in TGCs and 1482 (46.4%) downregulated. Gene Ontology (GO) analyses revealed that molecular functions and biological processes regulated by DEGs are related to the extracellular matrix (ECM) and its interactions with cellular receptors, cell migration and signal transduction. Furthermore, there was some evidence that O-glycan biosynthesis in TGCs may produce sialylated short-chain O-glycans (Tn antigen, core 1 O-glycans), while the synthesis of other O-glycan core structures required for the formation of complex (i.e., branched and long-chain) O-glycans appears to be decreased in TGCs.
Conclusion: The differentiation of UTCs into TGCs particularly regulates genes that enable trophoblast cells to interact with their environment. Significant differences between UTCs and TGCs in ECM composition indicate reduced anchoring of TGCs in the surrounding matrix, which might contribute to their migration and their weakly invasive interaction with the maternal endometrium. Furthermore, increased expression of sialylated short chain O-glycans by TGCs could facilitate the modulation of maternal immune tolerance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6969411 | PMC |
http://dx.doi.org/10.1186/s12860-020-0246-8 | DOI Listing |
Adv Anat Embryol Cell Biol
January 2025
Department of Animal Sciences, College of Agricultural, Consumer and Environmental Sciences, University of Illinois, Urbana, IL, USA.
Extracellular vesicles (EVs), including exosomes and microvesicles, have emerged as pivotal mediators of intercellular communication. Embryo implantation is a critical process in early pregnancy and requires communication between the embryo and maternal uterus. EVs are important in coordinating the communication between the embryo and maternal uterus.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
Fetal growth restriction (FGR) is a common complication of pregnancy, which seriously endangers fetal health and still lacks effective therapeutic targets. Clostridium difficile (C. difficile) is associated with fetal birth weight, and its membrane vesicles (MVs) are pathogenic vectors.
View Article and Find Full Text PDFAm J Reprod Immunol
January 2025
Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
Preeclampsia is one of the most severe obstetric complications, yet its pathogenesis remains unclear. Decidual natural killer (dNK) cells, the most abundant immune cells at the maternal-fetal interface, are closely associated with preeclampsia due to abnormalities in their quantity, phenotype, and function. This review summarizes the molecular mechanisms by which dNK cells regulate extravillous trophoblast (EVT) invasion, promote uterine spiral artery remodeling, and maintain immune tolerance.
View Article and Find Full Text PDFVirus Res
December 2024
Department of Virology, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro (PD), Italy.
Among flaviviruses, Zika virus (ZIKV) is the only arbovirus officially recognized as a teratogenic agent, as a consequence of its ability to infect and cross the placental barrier causing congenital malformation in the fetus. While many studies have focused on understanding ZIKV pathogenesis during pregnancy, the viral mechanisms affecting fetal development remain largely unclear. In this study, we investigated ZIKV virulence in placental trophoblasts, using viruses with distinct lipid profiles.
View Article and Find Full Text PDFPlacenta
December 2024
Faculty of Biotechnology and Food Engineering, Technion Israel Institute of Technology, Haifa, Israel. Electronic address:
Introduction: Single-cell RNA-seq (scRNA-seq) revolutionized our understanding of tissue complexity in health and disease and revealed massive transcriptional dysregulation across placental cell classes in early-onset, but not late-onset preeclampsia (PE). However, the multinucleated syncytium is largely inaccessible to cell dissociation. Nuclei isolation and single-nuclei RNA-seq may be preferable in the placenta; not least considering compatibility with long-term tissue storage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!