Microparticles (MPs) with controlled morphologies and sizes have been investigated by several researchers due to their importance in pharmaceutical, ceramic, cosmetic, and food industries to just name a few. In particular, the electrospray (ES) technique has been shown to be a viable alternative for the development of single particles with different dimensions, multiple layers, and varied morphologies. In order to adjust these properties, it is necessary to optimize different experimental parameters, such as polymer solvent, voltage, flow rate (FR), type of collectors, and distance between the collector and needle tip, which will all be highlighted in this review. Moreover, the influence and contributions of each of these parameters on the design and fabrication of polymeric MPs are described. In addition, the most common configurations of ES systems for this purpose are discussed, for instance, the main configuration of an ES system with monoaxial, coaxial, triaxial, and multi-capillary delivery. Finally, the main types of collectors employed, types of synthesized MPs and their applications specifically in the pharmaceutical and biomedical fields will be emphasized. To date, ES is a promising and versatile technology with numerous excellent applications in the pharmaceutical and biomaterials field and such MPs generated should be employed for the improved treatment of cancer, healing of bone, and other persistent medical problems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151563PMC
http://dx.doi.org/10.3390/jfb11010004DOI Listing

Publication Analysis

Top Keywords

fabrication polymeric
8
experimental parameters
8
applications pharmaceutical
8
polymeric microparticles
4
microparticles electrospray
4
electrospray impact
4
impact experimental
4
parameters microparticles
4
mps
4
microparticles mps
4

Similar Publications

Engineered living materials (ELMs), which usually comprise bacteria, fungi, or animal cells entrapped in polymeric matrices, offer limitless possibilities in fields like drug delivery or biosensing. Determining the conditions that sustain ELM performance while ensuring compatibility with ELM hosts is essential before testing them in vivo. This is critical to reduce animal experimentation and can be achieved through investigations.

View Article and Find Full Text PDF

Developing scaffolds supporting functional cell attachment and tissue growth is critical in basic cell research, tissue engineering, and regenerative medicine approaches. Though poly(ethylene glycol) (PEG) and its derivatives are attractive for hydrogels and scaffold fabrication, they often require bioactive modifications due to their bioinert nature. In this work, biomimetic synthesized conductive polypyrrole-poly(3,4-ethylenedioxythiophene) copolymer doped with poly(styrenesulfonate) (PPy-PEDOT:PSS) was used as a biocompatible coating for poly(ethylene glycol) diacrylate (PEGDA) hydrogel to support neuronal and muscle cells' attachment, activity, and differentiation.

View Article and Find Full Text PDF

Fabrication and saltiness enhancement of salt hollow particles by interface migration.

Food Res Int

February 2025

National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

The morbidity of the chronic diseases such as the hypertension and cardiovascular diseases has been increasing in recent decades. The unhealthy diet with excessive salt intake is one of the proegumenal causes. In this research, spherical hollow salt particles with high specific surface area and durable ginger flavor were prepared as a seasoning powder for salt reduction and saltiness enhancement in solid foods.

View Article and Find Full Text PDF

The combination of the active compounds curcumin and piperine (CP) is effective as an antimalarial; however, the solubility and bioavailability of CP are very low. This study aims to formulate CP in nanoparticles (NP), which are then fabricated into dissolving microneedles (DMN). The NPs were prepared with a concentration ratio of CP-Chitosan-So.

View Article and Find Full Text PDF

Scalable one-step fabrication of integrated electrode arrays for highly sensitive and portable carbendazim detection.

Food Chem

January 2025

Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, College of Health Science and Engineering, Hubei University, Wuhan 430062, China; School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; HuaShan Technology Company Limited, Qianjiang 433136, China. Electronic address:

Highly sensitive and portable pesticide residues detection are indispensable for safeguarding food safety and environmental health. Herein, we introduce a one-step vacuum filtration strategy for the scalable production of cobalt-based conjugated coordination polymers (CoCCPs) electrode arrays, utilizing carboxylated single-walled carbon nanotubes (c-SWNTs) as bonding bridges (CoCCPs@c-SWNTs). Due to their abundant active sites and high conductivity, the CoCCPs@c-SWNTs arrays exhibit superior electrochemical performance (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!