Study on the Mechanical Properties of Bionic Protection and Self-Recovery Structures.

Materials (Basel)

Beijing Huashengyang Hi-Tech Co., Ltd., Beijing 100000, China.

Published: January 2020

A novel protective structure, based on shrimp chela structure and the shape of odontodactylus scyllarus, has been shown to improve impact resistance and energy absorption. A finite element model of NiTi alloy with shape memory was constructed based on the basic principles of structural bionics. The protective structure utilizes NiTi alloy as the matrix, a material with many advantages including excellent compression energy absorption, reusability after unloading, and long life. The mechanical properties of the single-layer model were obtained by static crushing experiments and numerical simulations. Building upon the idea of the monolayer bionic structure design, a two-layer structure is also conceived. Both single-layer and double-layer structures have excellent compression energy absorption and self-recovery capabilities. Compared with the single-layer structure, the double-layer structure showed larger compression deformation and exhibited better energy absorption capacity. These results have important academic and practical significance for improving the impact resistance of protective armor. Our study makes it possible to repair automatic rebounds under the action of pressure load and improves the endurance and material utilization rate of other protective structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013465PMC
http://dx.doi.org/10.3390/ma13020389DOI Listing

Publication Analysis

Top Keywords

energy absorption
16
mechanical properties
8
protective structure
8
impact resistance
8
niti alloy
8
excellent compression
8
compression energy
8
structure
7
study mechanical
4
properties bionic
4

Similar Publications

Unlocking soybean meal pectin recalcitrance using a multi-enzyme cocktail approach.

Sci Rep

January 2025

BBF, Biodiversité et Biotechnologie Fongiques, INRAE, Aix-Marseille Univ, Marseille, France.

Pectin is a complex plant heteropolysaccharide whose structure and function differ depending on its source. In animal feed, breaking down pectin is essential, as its presence increases feed viscosity and reduces nutrient absorption. Soybean meal, a protein-rich poultry feed ingredient, contains significant amounts of pectin, the structure of which remains unclear.

View Article and Find Full Text PDF

Absorption spectra of PS in the ultraviolet and infrared region.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 China. Electronic address:

The line list is essential for accurately modeling various astrophysical phenomena, such as stellar photospheres and atmospheres of extrasolar planets. This paper introduces a new line database for the PS molecule spanning from the ultraviolet to the infrared regions, covering wavenumbers up to 45000 cm and containing over ten million transitions between 150,458 states with total angular momentum J < 160. Accurate line intensities for rotational, vibrational and electronic transitions are generated by using the general purpose variational code DUO.

View Article and Find Full Text PDF

CS bonds mediated rapid charge transfer in hm-CN/CdS heterostructure for efficient photocatalytic CO reduction.

J Colloid Interface Sci

January 2025

School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, PR China. Electronic address:

The quest for stable and high-performance photocatalysts is pivotal in advancing the field of photocatalytic CO reduction. Traditional single-component semiconductors are often impeded by their inability to concurrently achieve a broad light absorption spectrum, efficient separation of photogenerated charge carriers, and enduring stability, thereby constraining their photocatalytic efficacy. In this study, we introduce an innovative hm-CN/CdS heterojunction that broadens the light absorption spectrum and significantly enhances the separation efficiency of photogenerated charge carriers.

View Article and Find Full Text PDF

Rapid electrothermal upcycling hexachlorobutadiene (HCBD) polluted distillation residue into turbostratic graphene for enhanced electromagnetic wave absorption.

J Hazard Mater

January 2025

Institute of Zhejiang University - Quzhou, No. 99 Zheda Road, Quzhou 324000, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China. Electronic address:

The trichloroethylene production industry generates high-boiling-point solid residues during rectification, which contain high concentrations of chlorinated contaminants, particularly hexachlorobutadiene (HCBD). Traditionally, these distillation residues are managed through co-incineration or landfilling, leading to environmental and economic challenges. In this study, we present a rapid and environmentally friendly electrothermal approach for both detoxifying and upcycling distillation residue into graphene-based electromagnetic wave (EMW) absorbing materials.

View Article and Find Full Text PDF

This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!