The colloidal heteroassociation between natural mineral colloids and engineered nanoparticles (ENPs) can reduce the bioavailability and toxicity of the ENPs. However, the efficacy of this heteroassociation-based entrapment of ENPs depends on the intrinsic material properties of the particles and the physicochemical parameters of the aquatic environment. Natural organic matter (NOM)-induced surface modifications of clay colloids, functionalization of ENPs, and efficiency of counterions as effective coagulants profoundly affect the effectiveness of heteroaggregation-based attenuation of anthropogenic colloids. In this study, tannic acid (TA), a surrogate of NOM, prevented the edge-to-face self-association of sodium-saturated kaolinite (Na-kaolinite) at acidic pH, as evaluated from the transverse proton spin-spin relaxation data (T). Likewise, fullerene water suspension (FWS) adhesion to Na-kaolinite prevented the self-association of Na-kaolinite and enhanced the colloidal stability. At pH 4 and diffusion-limited aggregation regime salt concentrations, the Na-kaolinite and FWS heteroaggregation rates were lower than the Na-kaolinite homoaggregation rates, and eventually reached a plateau. The higher colloidal stability of the Na-kaolinite and FWS binary mixture than that of Na-kaolinite, regardless of stronger charge screening by Ca reflects steric stabilization. However, at pH 7, the increased electrostatic barrier reduces the feasibility of colloidal heteroassociation between Na-kaolinite and FWS; thus, higher salt concentrations are required to initiate aggregation. Weak adsorption of TA on Na-kaolinite at pH 7 facilitated stronger π-π interactions with FWS. All suspensions exhibited faster aggregate growth at pH 7 than pH 4, possibly due to the stronger cation response at pH 7. In situ atomic force microscopy imaging and line profile plots of Na-kaolinite, TA, and FWS mixture in CaCl further corroborated the difference in the heteroaggregation rates observed at the two different pH values. Thus, TA-induced surface functionalization of FWS and the consequent increased electrostatic barrier to heteroassociation with Na-kaolinite may facilitate the environmental mobility of FWS in aquatic media.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.136559 | DOI Listing |
Sci Total Environ
April 2020
Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States of America.
The colloidal heteroassociation between natural mineral colloids and engineered nanoparticles (ENPs) can reduce the bioavailability and toxicity of the ENPs. However, the efficacy of this heteroassociation-based entrapment of ENPs depends on the intrinsic material properties of the particles and the physicochemical parameters of the aquatic environment. Natural organic matter (NOM)-induced surface modifications of clay colloids, functionalization of ENPs, and efficiency of counterions as effective coagulants profoundly affect the effectiveness of heteroaggregation-based attenuation of anthropogenic colloids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!