The parasitic mite Varroa destructor and the associated viruses it transmits are responsible for most instances of honey bee colony losses in the United States. As such, beekeepers utilize miticides to control Varroa populations. Widespread resistance has developed to the miticides fluvalinate and coumaphos. However, Varroa has largely maintained susceptibility to amitraz despite a long and extensive use history. Anecdotal reports of reduced amitraz effectiveness have been a widely discussed contemporary issue among commercial beekeepers. Amitraz resistance was measured by in vitro bioassays with technical amitraz as well as Apivar® efficacy tests. Amitraz resistance was evaluated in commercial beekeeping operations in Louisiana, New York, and South Dakota with a long history of amitraz use. This research shows that amitraz remains an effective Varroa control product in many operations. However, apiaries across operations displayed a wide range of amitraz resistance from no resistance to high resistance that resulted in Varroa control failure. The resistance ratios from in vitro amitraz bioassays were correlated with reduced Apivar® efficacy, demonstrating bona fide cases of Varroa control failures due to amitraz resistance. Therefore, amitraz resistance monitoring protocols need to be developed. A resistance monitoring network should be established to ensure the sustainability of miticide use for Varroa control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6968863 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0227264 | PLOS |
Front Antibiot
April 2024
Transmission, Reservoir and Diversity of Pathogens Unit, Institut Pasteur, Les Abymes, France.
Introduction: This study aimed to understand the origin and to explain the maintenance of extended-spectrum β-lactamase (ESBL) isolated from food-producing animals in a third-generation cephalosporin (3GC)-free farm.
Methods: Culture and molecular approaches were used to test molecules other than 3GC such as antibiotics (tetracycline and oxytetracycline), antiparasitics (ivermectin, flumethrin, fenbendazol, and amitraz), heavy metal [arsenic, HNO, aluminum, HNO, cadmium (CdSO), zinc (ZnCl), copper (CuSO), iron (FeCl), and aluminum (AlSO)], and antioxidant (butylated hydroxytoluene) as sources of selective pressure. Whole-genome sequencing using short read (Illumina™) and long read (Nanopore™) technologies was performed on 34 genomes.
Sci Rep
January 2025
Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
The ectoparasitic mite Varroa destructor remains a great threat for the beekeeping industry, for example contributing to excessive winter colony loss in Canada. For decades, beekeepers have sequentially used the registered synthetic varroacides tau-fluvalinate, coumaphos, amitraz, and flumethrin, leading to the risk of resistance evolution in the mites. In addition to the widespread resistance to coumaphos and pyrethroids, a decline in amitraz efficacy has recently been reported in numerous beekeeping regions in Canada.
View Article and Find Full Text PDFMed Vet Entomol
October 2024
Departamento de Diagnóstico e Pesquisa Agropecuária, Instituto de Pesquisas Veterinárias Desidério Finamor (IPVDF), Eldorado do Sul, Brazil.
Pest Manag Sci
January 2025
Instituto Universitario de Biotecnología y Biomedicina (BIOTECMED), Universitat de València, Burjassot, Spain.
Background: The acaricide amitraz is now used intensively in many regions to control the honey bee parasite, Varroa destructor, because of the reduced efficacy of pyrethroids and coumaphos caused by resistance evolution. The continued application of amitraz in recent years exerts a very high selection pressure on mites, favouring the evolution of resistance to this acaricide. Mutations N87S and Y215H in the β2-adrenergic-like octopamine receptor (Octβ2R), target site of amitraz, have been already associated with resistance to amitraz in France and the USA, respectively.
View Article and Find Full Text PDFPestic Biochem Physiol
September 2024
Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!