Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We theoretically investigate the many-body states of exciton polaritons that can be observed by pump-probe spectroscopy in high-Q inorganic microcavities. Here, a weak-probe "spin-down" polariton is introduced into a coherent state of "spin-up" polaritons created by a strong pump. We show that the ↓ impurities become dressed by excitations of the ↑ medium, and that they form new polaronic quasiparticles that feature two-point and three-point many-body quantum correlations that, in the low density regime, arise from coupling to the vacuum biexciton and triexciton states, respectively. In particular, we find that these correlations generate additional branches and avoided crossings in the ↓ optical transmission spectrum that have a characteristic dependence on the ↑-polariton density. Our results thus demonstrate a way to directly observe correlated many-body states in an exciton-polariton system that go beyond classical mean-field theories.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.123.266401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!