A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Discovery of an Exceptionally Strong β-Decay Transition of ^{20}F and Implications for the Fate of Intermediate-Mass Stars. | LitMetric

A significant fraction of stars between 7 and 11 solar masses are thought to become supernovae, but the explosion mechanism is unclear. The answer depends critically on the rate of electron capture on ^{20}Ne in the degenerate oxygen-neon stellar core. However, because of the unknown strength of the transition between the ground states of ^{20}Ne and ^{20}F, it has not previously been possible to fully constrain the rate. By measuring the transition, we establish that its strength is exceptionally large and that it enhances the capture rate by several orders of magnitude. This has a decisive impact on the evolution of the core, increasing the likelihood that the star is (partially) disrupted by a thermonuclear explosion rather than collapsing to form a neutron star. Importantly, our measurement resolves the last remaining nuclear physics uncertainty in the final evolution of degenerate oxygen-neon stellar cores, allowing future studies to address the critical role of convection, which at present is poorly understood.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.123.262701DOI Listing

Publication Analysis

Top Keywords

degenerate oxygen-neon
8
oxygen-neon stellar
8
discovery exceptionally
4
exceptionally strong
4
strong β-decay
4
β-decay transition
4
transition ^{20}f
4
^{20}f implications
4
implications fate
4
fate intermediate-mass
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!