We report on the measurement of the two-neutrino double-β decay of ^{82}Se performed for the first time with cryogenic calorimeters, in the framework of the CUPID-0 experiment. With an exposure of 9.95 kg yr of Zn^{82}Se, we determine the two-neutrino double-β decay half-life of ^{82}Se with an unprecedented precision level, T_{1/2}^{2ν}=[8.60±0.03(stat) _{-0.13}^{+0.19}(syst)]×10^{19}  yr. The very high signal-to-background ratio, along with the detailed reconstruction of the background sources allowed us to identify the single state dominance as the underlying mechanism of such a process, demonstrating that the higher state dominance hypothesis is disfavored at the level of 5.5σ.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.123.262501DOI Listing

Publication Analysis

Top Keywords

state dominance
12
two-neutrino double-β
12
double-β decay
12
single state
8
decay ^{82}se
8
evidence single
4
dominance two-neutrino
4
^{82}se cupid-0
4
cupid-0 report
4
report measurement
4

Similar Publications

Among expanding discoveries of quantum phases in moiré superlattices, correlated insulators stand out as both the most stable and most commonly observed. Despite the central importance of these states in moiré physics, little is known about their underlying nature. Here, we use pump-probe spectroscopy to show distinct time-domain signatures of correlated insulators at fillings of one (ν = -1) and two (ν = -2) holes per moiré unit cell in the angle-aligned WSe/WS system.

View Article and Find Full Text PDF

Background: Perry syndrome (PS) is a rare and fatal hereditary autosomal dominant neurodegenerative disorder caused by mutations in dynactin (DCTN1). PS brains accumulate inclusions positive for ubiquitin, transactive-response DNA-binding protein of 43 kDa (TDP-43), and to a lesser extent dynactin.

Objectives: Little is known regarding the contributions of TDP-43, an RNA binding protein that represses cryptic exon inclusion, in PS.

View Article and Find Full Text PDF

Pendant organic chromophores have been used to improve the photocatalytic performance of many metal-based photosensitizers, particularly in first-row metals, by increasing π conjugation in ligands and lowering the energy of the photoactive absorption band. Using a combination of spectroscopic studies and computational modeling, we rationalize the excited state dynamics of a Co(III) complex containing pendant pyrene moieties, , where = 1,1'-(4-(pyren-1-yl)pyridine-2,6-diyl)bis(3-methyl-1-imidazol-3-ium). displays higher visible absorptivity, and blue luminescence from pyrene singlet excited states compared with [ = 1,1'-(pyridine-2,6-diyl)bis(3-methyl-1-imidazol-3-ium)] in which the pyrene moiety is absent.

View Article and Find Full Text PDF

An important question in restoration ecology is whether restored ecological regimes are more vulnerable to transitions back to a degraded state. In woody-invaded grasslands, high-intensity fire can collapse woody plant communities and induce a shift back to a grass-dominated regime. Yet, legacies from woody-dominated regimes often persist and it remains unclear whether restored regimes are at heightened vulnerability to reinvasion.

View Article and Find Full Text PDF

Quantifying microplastics concentration of invertebrates from three Antarctic fjords.

Mar Pollut Bull

January 2025

University of West Florida, 11000 University Parkway, Pensacola, FL 32514, United States of America. Electronic address:

Microplastics, small pieces of plastic measuring less than five millimeters, have spread to all ecosystems, even those in the Southern Ocean around Antarctica. In particular, microplastics have been found contaminating water in emerging fjords, or inlets created by deglaciation, along the Antarctic Peninsula. Microplastics contamination puts fjord communities, which are unique and dominated by benthic species, at high risk for microplastic exposure leading to issues with feeding, endocrine disruption, and exposure to adsorbed toxins, all of which lower fecundity and survivability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!