Revealing a Decisive Role for Secondary Coordination Sphere Nucleophiles on Methane Activation.

J Am Chem Soc

Department of Chemistry, Center for Advanced Scientific Computing and Modeling (CASCaM) , University of North Texas, Denton , Texas 76203 , United States.

Published: February 2020

Density functional theory and calculations indicate that nucleophiles can significantly reduce enthalpic barriers to methane C-H bond activation. Valence bond analysis suggests the formation of a two-center three-electron bond as the origin for the catalytic nucleophile effect. A predictive model for methane activation catalysis follows, which suggests that strongly electron-attracting and electron-rich radicals, together with both a negatively charged and strongly electron-donating outer sphere nucleophile, result in the lowest reaction barriers. It is corroborated by the sensitivity of the calculated C-H activation barriers to the external nucleophile and to continuum solvent polarity. More generally, from the present studies, one may propose proteins with hydrophobic active sites, available strong nucleophiles, and hydrogen bond donors as attractive targets for engineering novel methane functionalizing enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b12644DOI Listing

Publication Analysis

Top Keywords

methane activation
8
revealing decisive
4
decisive role
4
role secondary
4
secondary coordination
4
coordination sphere
4
sphere nucleophiles
4
methane
4
nucleophiles methane
4
activation
4

Similar Publications

The significant role of vegetation activity in regulating wetland methane emission in China.

Environ Res

January 2025

Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; Earth Critical Zone and Flux Research Station of Xing'an Mountains, Chinese Academy of 15 Sciences, Daxing'anling 165200, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 10049, China. Electronic address:

Accurate quantifying of methane (CH) emissions is a critical aspect of current research on regional carbon budgets. However, due to limitations in observational data, research methodologies, and an incomplete understanding of process mechanisms, significant uncertainties persist in the assessment of wetland CH fluxes in China. In this study, we developed a machine learning model by integrating measured CH fluxes with related environmental data to produce a high-resolution (1 km) dataset of CH fluxes from China's wetlands for the period 2000-2020.

View Article and Find Full Text PDF

One-step transformation of CO to methane by Escherichia coli with a synthetic biomethanation module.

Biochem Biophys Res Commun

January 2025

Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; School of Emergency Management, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, China. Electronic address:

The biomethanation process is widely recognized as a significant approach to mitigating carbon dioxide emissions while simultaneously generating methane. However, only a few microorganisms that required intricate culturing conditions were identified for biomethanation. Here, Escherichia coli that featured easy cultivation and versatile chassis was genetically modified for biomethanation for the first time.

View Article and Find Full Text PDF

Hydrate formation in porous media with upward-migrating methane and its implications for the evolution of deep-sea cold seep ecosystems.

Sci Total Environ

January 2025

Research Centre of Ecology & Environment for Coastal Area and Deep Sea, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

Methane leaking from the deep seabed is a primary source of carbon and energy for various microorganisms, sustaining the evolution and productivity of cold seep ecosystems. However, the dynamics of methane hydrate formation under methane seepage conditions and potential impacts on the evolution of cold seep ecosystems remain unclear. This study investigated the dynamic formation characteristics of gas hydrates within cold seep sediments by simulating the methane leakage process.

View Article and Find Full Text PDF

As freshwater lakes undergo rapid anthropogenic change, long-term studies reveal key microbial dynamics, evolutionary shifts and biogeochemical interactions, yet the vital role of viruses remains overlooked. Here, leveraging a 20 year time series from Lake Mendota, WI, USA, we characterized 1.3 million viral genomes across time, seasonality and environmental factors.

View Article and Find Full Text PDF

A pronounced nucleophilicity in combination with a distinct redox non-innocence is a unique feature of a coordinated ligand, which in the current case, leads to unprecedented carbon-centered reactivity patterns: A carbodiphosphorane-based (CDP) pincer-type rhodium complex allows to cleave two C-Cl-bonds of geminal dichlorides via two consecutive SN2-type oxidative additions resulting in the formation of a stabilized carbene fragment. In the presence of a suitable reductant the carbene fragment can even be converted into olefines or hydrodehalogenation products in a catalytic reaction. The developed method can also be used to convert chlorofluorocarbons (CFCs) such as CH2ClF to fluoromethane and methane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!