Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antibiotic contamination of water bodies is a major environmental concern. Exposure to superfluous antibiotics is an ecological stressor correlated to the development of antibiotic resistance. Thus, it is imperative that effective methods are developed to simultaneously detect and remove such antibiotics so as to avoid inadvertent release. Herein, two flexible three-dimensional (3D) zinc-based metal-organic frameworks (MOFs) {[Zn(bcob)(OH)(HO)]·DMA} () and {[Zn(Hbcob)]·(solvent)} () (Hbcob = 1,3-bis((4'-carboxylbenzyl)oxy)benzoic acid) with rod second building units (SBUs) are successfully prepared. Their exceptional water and chemical stabilities (toward both acid and base), fast sorption kinetics, and unique framework endow the MOFs with excellent uptake capacity toward various antibiotics in the aqueous environment. The adsorption performance was further optimized by one-pot preparation of MOF-melamine foam (MF) hybrid composites, resulting in a hierarchical microporous-macroporous MOF@MF system (@MF and @MF), which are readily recyclable after adsorptive capture. The mechanisms of adsorption have been deeply investigated by static and competitive adsorption experiments. In addition, the MOFs exhibit excellent fluorescent properties and quenched by trace amounts of antibiotics in water solution. Therefore, and present a dual-functional performance, being promising candidates for detection and removal of antibiotics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.9b19583 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!