A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predicting hospitalizations from electronic health record data. | LitMetric

Predicting hospitalizations from electronic health record data.

Am J Manag Care

Atrius Health, 133 Brookline Ave, Boston, MA 02215. Email:

Published: January 2020

Objectives: Electronic health record (EHR) data have become increasingly available and may help inform clinical prediction. However, predicting hospitalizations among a diverse group of patients remains difficult. We sought to use EHR data to create and internally validate a predictive model for clinical use in predicting hospitalizations.

Study Design: Retrospective observational cohort study.

Methods: We analyzed EHR data in patients 18 years or older seen at Atrius Health from June 2013 to November 2015. We selected variables among patient demographics, clinical diagnoses, medications, and prior utilization to train a logistic regression model predicting any hospitalization within 6 months and validated the model using a separate validation set. We performed sensitivity analysis on model performance using combinations of EHR-derived, claims-derived, or both EHR- and claims-derived data.

Results: After exclusions, 363,855 patient-months were included for analysis, representing 185,388 unique patients. The strongest features included sickle cell anemia (odds ratio [OR], 52.72), lipidoses and glycogenosis (OR, 8.44), heart transplant (OR, 6.12), and age 76 years or older (OR, 5.32). Model testing showed that EHR-only data had an area under the receiver operating characteristic curve (AUC) of 0.84 (95% CI, 0.838-0.853), which was similar to the claims-only data (AUC, 0.84; 95% CI, 0.831-0.848) and combined claims and EHR data (AUC, 0.846; 95% CI, 0.838-0.853).

Conclusions: Prediction models using EHR-only, claims-only, and combined data had similar predictive value and demonstrated strong discrimination for which patients will be hospitalized in the ensuing 6 months.

Download full-text PDF

Source
http://dx.doi.org/10.37765/ajmc.2020.42147DOI Listing

Publication Analysis

Top Keywords

ehr data
16
predicting hospitalizations
8
electronic health
8
health record
8
data
8
years older
8
auc 084
8
084 95%
8
data auc
8
model
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!