A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Surface conduction and electroosmotic flow around charged dielectric pillar arrays in microchannels. | LitMetric

Surface conduction and electroosmotic flow around charged dielectric pillar arrays in microchannels.

Lab Chip

Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea. and Inter-University Semiconductor Research Center, Seoul National University, Seoul, 08826, South Korea and Nano Systems Institute, Seoul National University, Seoul, 08826, South Korea.

Published: February 2020

Dielectric microstructures have been reported to have a negative influence on permselective ion transportation because ions do not migrate in areas where the structures are located. However, the structure can promote the transportation if the membrane is confined to a microscopic scale. In such a scale where the area to volume ratio is significantly large, the primary driving mechanisms of the ion transportation transition from electro-convective instability (EOI) to surface conduction (SC) and electroosmotic flow (EOF). Here, we provide rigorous evidence on how the SC and EOF around the dielectric microstructures can accelerate the ion transportation by multi-physics simulations and experimental visualizations. The microstructures further polarize the ion distribution by SC and EOF so that ion carriers can travel to the membrane more efficiently. Furthermore, we verified, for the first time, that the arrangements of microstructures have a critical impact on the ion transportation. While convective flows are isolated in the crystal pillar configuration, the flows show an elongated pattern and create an additional path for ion current in the aligned pillar configuration. Therefore, the fundamental findings of the electrokinetic effects on the dielectric microstructures suggest an innovative application in micro/nanofluidic devices with high mass transport efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9lc01008dDOI Listing

Publication Analysis

Top Keywords

ion transportation
16
dielectric microstructures
12
surface conduction
8
conduction electroosmotic
8
electroosmotic flow
8
pillar configuration
8
ion
7
microstructures
5
transportation
5
flow charged
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!