Most people will experience a traumatic event within their lifetime. One commonly recognized response to trauma exposure is posttraumatic stress disorder (PTSD). The biological underpinnings of PTSD, including epigenetic mechanisms of DNA methylation and gene expression, have been studied intensively. However, psychological posttrauma responses vary widely and can include positive outcomes, such as posttraumatic growth (PTG) and, more commonly, resilience. The aim of this systematic review was to summarize the current DNA methylation and gene expression data with respect to three potential posttrauma responses: PTSD, PTG, and resilience. A literature search identified 486 studies, 51 of which were deemed eligible for inclusion (total N = 10,633). All included studies examined PTSD and consistently implicated DNA methylation and gene expression changes in hypothalamic-pituitary-adrenal axis and inflammatory genes. Ten studies acknowledged resilience as a posttrauma response, but only two studies examined epigenetics and gene expression using a scale to measure resilience. Low resilience was associated with gene expression patterns in immune and dopamine genes, and high resilience was associated with a blunted inflammatory response. No studies examined epigenetic or gene expression changes associated with PTG. These findings highlight a focus on pathogenic research, which has failed to adequately acknowledge and measure positive posttrauma outcomes of PTG and resilience. Future research should examine DNA methylation and gene expression changes associated with PTG and resilience in addition to PTSD in order to gain a more comprehensive picture of an individual's well-being following exposure to trauma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jts.22472 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!