Temporal and spatial presentations of biological cues are critical for tissue engineering. There is a great need in improving the incorporation of bioagent(s) (specifically growth factor(s) [GF(s)]) onto three-dimensional scaffolds. In this study, we developed a process to combine additive manufacturing (AM) technology with acoustic droplet ejection (ADE) technology to control GF distribution. More specifically, we implemented ADE to control the distribution of recombinant human bone morphogenetic protein-2 (rhBMP-2) onto polycaprolactone (PCL)-based tissue engineering constructs (TECs). Three substrates were used in this study: (1) succinimide-terminated PCL (PCL-N-hydroxysuccinimide [NHS]) as model material, (2) alkali-treated PCL (PCL-NaOH) as first control material, and (3) fibrin-coated PCL (PCL-Fibrin) as second control material. It was shown that our process enables a pattern of BMP-2 spots of ∼250 μm in diameter with ∼700 μm center-to-center spacing. An initial concentration of BMP-2 higher than 300 μg/L was required to retain a detectable amount of GF on the substrate after a wash with phosphate-buffered solution. However, to obtain detectable osteogenic differentiation of C2C12 cells, the initial concentration of BMP-2 higher than 750 μg/L was needed. The cells on PCL-NHS samples showed spatial alkaline phosphatase staining correlating with local patterns of BMP-2, although the intensity was lower than the controls (PCL-NaOH and PCL-Fibrin). Our results have demonstrated that the developed AM-ADE process holds great promise in creating TECs with highly controlled GF patterning. Impact statement The combined process of additive manufacturing with acoustic droplet ejection to control growth factor (GF) distribution across three-dimensional (3D) porous scaffolds that is presented in this study enables creating 3D tissue engineering constructs with highly controlled GF patterning. Such constructs enable temporal and spatial presentations of biological cues for enhancing cell migration and differentiation and eventually the formation of targeted tissues and .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310194 | PMC |
http://dx.doi.org/10.1089/ten.TEA.2019.0271 | DOI Listing |
iScience
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea.
The heart, with its complex structural and functional characteristics, plays a critical role in sustaining life by pumping blood throughout the entire body to supply nutrients and oxygen. Engineered heart tissues have been introduced to reproduce heart functions to understand the pathophysiological properties of the heart and to test and develop potential therapeutics. Although numerous studies have been conducted in various fields to increase the functionality of heart tissue to be similar to reality, there are still many difficulties in reproducing the blood-pumping function of the heart.
View Article and Find Full Text PDFiScience
January 2025
Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge CB2 3DY, UK.
The implantation of the mouse blastocyst initiates a complex sequence of tissue remodeling and cell differentiation events required for morphogenesis, during which the extraembryonic primitive endoderm transitions into the visceral endoderm. Through single-cell RNA sequencing of embryos at embryonic day 5.0, shortly after implantation, we reveal that this transition is driven by dynamic signaling activities, notably the upregulation of BMP signaling and a transient increase in Sox7 expression.
View Article and Find Full Text PDFExtreme Mech Lett
March 2025
Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA.
Cutting soft materials on the microscale has emerging applications in single-cell studies, tissue microdissection for organoid culture, drug screens, and other analyses. However, the cutting process is complex and remains incompletely understood. Furthermore, precise control over blade geometries, such as the blade tip radius, has been difficult to achieve.
View Article and Find Full Text PDFJ Food Sci Technol
January 2025
Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo, Pirassununga, SP 13635-900 Brazil.
Ivermectin (IVM) is one of the most widely used antiparasitic drugs worldwide and has become the drug of choice for anthelmintic and tick treatment in beef cattle production. Drugs used in production animals requires a withdrawal period after treatment to avoid residual concentrations above the defined maximun residue level (MRL). The aims of this study were to quantify the residue level of IVM in different muscles of cattle at several different time periods following 1% or 3.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Federal University of Alagoas, Center of Technology, Maceió, Brazil.
Medical implants are designed to replace missing parts or improve body functions and must be capable of providing structural support or therapeutic intervention for a medical condition. Advances in materials science have enabled the development of devices made from metals, polymers, bioceramics, and composites, each with its specific advantages and limitations. This review analyzes the incorporation of biopolymers, proteins, and other biomacromolecules into implants, focusing on their role in biological integration and therapeutic functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!