Multiple Effects of Mechanical Stretch on Myogenic Progenitor Cells.

Stem Cells Dev

Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China.

Published: March 2020

Mechanically stretched skeletal muscle undergoes dramatic shifts in structure, mass, and function. In vitro tensile strain models have demonstrated that myogenic progenitor cells, including satellite cells and myoblasts, are highly mechanosensitive cells, and respond to mechanical strain in a wide variety of aspects. However, the experimental results from different researchers and laboratories are not always in support of each other. Moreover, some specific molecules or signaling pathways were reported to play distinct roles in stretched myogenic cells, according to the statements of different studies. The purpose of this review is to integrate the researches conducting in vitro culture of satellite cells or myoblasts and exploring their mechanoresponses using in vitro stretching apparatus. These responses will be categorized into several groups, such as activation, proliferation, myogenic differentiation, cellular damage or apoptosis, properties of plasma membrane, transdifferentiation, reorientation, etc. In addition, detailed experimental designs like culturing conditions and straining regimens will be displayed and compared, to interpret some contradictory statements in different studies. Furthermore, the currently known interconnections among some mechanosensitive pathways will be pictured to give a better understanding about the complex regulations of myogenic cell responses to mechanical stretch. Hopefully, by summarizing the published studies about mechanoresponses of myogenic progenitor cells, future directions, and perspectives would be made clearer to researchers in this field.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2019.0286DOI Listing

Publication Analysis

Top Keywords

myogenic progenitor
12
progenitor cells
12
mechanical stretch
8
satellite cells
8
cells myoblasts
8
statements studies
8
cells
7
myogenic
6
multiple effects
4
effects mechanical
4

Similar Publications

Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation.

View Article and Find Full Text PDF

Muscle stem cells (MuSCs) are essential for skeletal muscle regeneration, influenced by a complex interplay of mechanical, biochemical, and molecular cues. Properties of the extracellular matrix (ECM) such as stiffness and alignment guide stem cell fate through mechanosensitive pathways, where forces like shear stress translate into biochemical signals, affecting cell behavior. Aging introduces senescence which disrupts the MuSC niche, leading to reduced regenerative capacity via epigenetic alterations and metabolic shifts.

View Article and Find Full Text PDF

Elevated EBF2 in mouse but not pig drives the progressive brown fat lineage specification via chromatin activation.

J Adv Res

December 2024

College of Animal Science, Shandong Provincial Key Laboratory for Livestock Germplasm Innovation & Utilization, Shandong Agricultural University, Taian, China; College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China. Electronic address:

Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, but it is absent in some mammals, including pigs. During development, BAT progenitors are derived from paired box 7 (Pax7)-expressing somitic mesodermal stem cells, which also give rise to skeletal muscle. However, the intrinsic mechanisms underlying the fate decisions between brown fat and muscle progenitors remain elusive.

View Article and Find Full Text PDF

Intrinsic Muscle Stem Cell Dysfunction Contributes to Impaired Regeneration in the mdx Mouse.

J Cachexia Sarcopenia Muscle

February 2025

Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada.

Background: Duchenne muscular dystrophy (DMD) is a devastating disease characterized by progressive muscle wasting that leads to diminished lifespan. In addition to the inherent weakness of dystrophin-deficient muscle, the dysfunction of resident muscle stem cells (MuSC) significantly contributes to disease progression.

Methods: Using the mdx mouse model of DMD, we performed an in-depth characterization of disease progression and MuSC function in dystrophin-deficient skeletal muscle using immunohistology, isometric force measurements, transcriptomic analysis and transplantation assays.

View Article and Find Full Text PDF

Generation of induced pluripotent cells (hiPSCs)-derived skeletal muscle progenitor cells (SMPCs) holds great promise for regenerative medicine for skeletal muscle wasting diseases, as for example Duchenne Muscular Dystrophy (DMD). Multiple approaches, involving ectopic expression of key regulatory myogenic genes or small molecules cocktails, have been described by different groups to obtain SMPC towards cell-transplantation as a therapeutic approach to skeletal muscle diseases. However, hiPSCs-derived SMPC generated using transgene-free protocols are usually obtained in a low amount and resemble a more embryonal/fetal stage of differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!