The synthesis and pH-sensing property of a novel phenalenone-based compound, 9-(4-hydroxyphenylamino)-1-oxo-phenalenone (HPAP), is reported. The newly synthesized compound is capable of functioning as a pH sensor in the region of pH 7 to 12. The sensor can be used as a colorimetric indicator in the transition from pH 10 to pH 11. The sensor is able to function in four detectable channels. All four channels (UV, emission, colorimetric/visible and photoluminescence) have been shown to be reversible, thus implying the reuse of this single-molecule sensor and indicator for several experiments. Mechanistic investigations have been performed by UV, NMR and DFT studies which indicate that a photoinduced electron transfer (PET) based mechanism could be operative. Straightforward and cost-effective application of the sensor in thin-layer chromatography has also been established.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.201800420DOI Listing

Publication Analysis

Top Keywords

detectable channels
8
sensor
6
design synthesis
4
synthesis photochemical
4
photochemical properties
4
properties phenalenone-based
4
phenalenone-based sensor
4
sensor switchable
4
switchable sensing
4
sensing detectable
4

Similar Publications

Protein Detection Based on Field-Effect Transistor Biosensors for Diagnosing Diseases.

Anal Chem

January 2025

State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of the Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China.

Proteins have been one of the most important biomarkers for diagnosing diseases, and field-effect transistor (FET) biosensors possess high sensitivity; are label-free; and feature real-time detection, rapidity, and easy integration for protein detection. FET biosensors are mainly made up of FET parts, such as channel materials, and bio parts, such as receptors. This Tutorial provides an in-depth exploration of FET biosensors for protein detection from the composition perspective and discusses the commercialization of point-of-care diagnostics of proteins based on FET biosensors.

View Article and Find Full Text PDF

Owing to its high spatial resolution and its high sensitivity to chemical element detection, transmission electron microscopy (TEM) technique enables to address high-level materials characterization of advanced technologies in the microelectronics field. TEM instruments fitted with various techniques are well-suited for assessing the local structural and chemical order of specific details. Among these techniques, 4D-STEM is suitable to estimate the strain distribution of a large field of view.

View Article and Find Full Text PDF

The assessment of early atherosclerosis (AS) via fluorescence imaging is crucial for advancing early diagnosis research. Abnormal inflammation biomarkers, including hypochlorous acid (HClO) and viscosity within mitochondria, have been closely linked to the pathogenesis of AS. However, current fluorescent probes predominantly rely on unimodal imaging that targets a single biomarker and lacks mitochondrial specificity, which can result in potential false signal readouts due to the complex intracellular environment.

View Article and Find Full Text PDF

Carbon dots (CDs), one type of zero-dimensional carbon nanomaterial, showed extensive application in food analysis. Herein, CDs as fluorometry and colorimetry probes were developed to determine peroxydisulfate (PDS) and phosphate ion (Pi) in food samples. CDs were developed with one-pot hydrothermal process from 5-amino salicylic acid and o/m-phenylenediamine named o/m-CDs.

View Article and Find Full Text PDF

Ultrasensitive electrochemical detection of gallic acid in beverages based on nitrogen-doped multi-walled carbon nanotube networks embellished with cobalt 2-methylimidazole nanoparticles.

Food Chem

January 2025

Materials Research Institute and Department of Ecosystem Science and Management, 204 Energy and the Environment Laboratory, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address:

This work presents a convenient and easy-to-operate method for synthesizing the functionally integrated nanocomposite of nitrogen-doped multi walled carbon nanotube networks (N-CNTs) and cobalt 2-methylimidazole (ZIF-67) nanoparticles. The N-CNTs@ZIF-67 nanocomposite was utilized to design a novel electrochemical sensing platform for detecting gallic acid (GA). The N-CNTs@ZIF-67 modified glass carbon electrode (GCE) demonstrated high sensitivity for GA electrochemical detection (LOD: 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!