Drought-Induced Stress Priming in Two Distinct Filamentous Saprotrophic Fungi.

Microb Ecol

Department of Soil Ecology, BayCEER, University of Bayreuth, Dr.-Hans-Frisch-Straße 1-3, 95448, Bayreuth, Germany.

Published: July 2020

AI Article Synopsis

  • Sessile organisms, like saprotrophic fungi, can adapt to environmental stressors, particularly drought, through a process known as "stress priming," which allows them to better cope with severe stress after experiencing a milder one.
  • A study tested two common fungi species, Neurospora crassa and Penicillium chrysogenum, to see how they respond to drought-induced stress priming, using a batch experiment with varying levels of moisture.
  • Results showed that P. chrysogenum experienced positive stress priming effects, improving biomass and activity after triggering, while N. crassa displayed no significant priming effects, indicating that drought-induced stress responses in fungi are likely species-specific and could impact ecological dynamics as droughts become more frequent

Article Abstract

Sessile organisms constantly face environmental fluctuations and especially drought is a common stressor. One adaptive mechanism is "stress priming," the ability to cope with a severe stress ("triggering") by retaining information from a previous mild stress event ("priming"). While plants have been extensively investigated for drought-induced stress priming, no information is available for saprotrophic filamentous fungi, which are highly important for nutrient cycles. Here, we investigated the potential for drought-induced stress priming of one strain each of two ubiquitous species, Neurospora crassa and Penicillium chrysogenum. A batch experiment with 4 treatments was conducted on a sandy soil: exposure to priming and/or triggering as well as non-stressed controls. A priming stress was caused by desiccation to pF 4. The samples were then rewetted and after 1-, 7-, or 14-days of recovery triggered (pF 6). After triggering, fungal biomass, respiration, and β-glucosidase activity were quantified. P. chrysogenum showed positive stress priming effects. After 1 day of recovery, biomass as well as β-glucosidase activity and respiration were 0.5 to 5 times higher during triggering. Effects on biomass and activity decreased with prolonged recovery but lasted for 7 days and minor effects were still detectable after 14 days. Without triggering, stress priming had a temporary negative impact on biomass but this reversed after 14 days. For N. crassa, no stress priming effect was observed on the tested variables. The potential for drought-induced stress priming seems to be species specific with potentially high impact on composition and activity of fungal communities considering the expected increase of drought events.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7338827PMC
http://dx.doi.org/10.1007/s00248-019-01481-wDOI Listing

Publication Analysis

Top Keywords

stress priming
28
drought-induced stress
16
priming
9
stress
9
potential drought-induced
8
β-glucosidase activity
8
drought-induced
4
priming distinct
4
distinct filamentous
4
filamentous saprotrophic
4

Similar Publications

Sperm motility is the prime functional attribute for semen quality and fertility of the bull. However, the bull's age directly affects the semen quality, and the bull's fertility and productive life decline with age. Even though research on age has been conducted in the past, it is still unclear how old a bull should be maintained at artificial insemination centers.

View Article and Find Full Text PDF

Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.

View Article and Find Full Text PDF

Synthetic elicitors are non-toxic chemicals and safe for the environment when applied to plants in a variety of ways. They have been shown to interact with defense mechanisms of plants and cause the production of a wide range of valuable secondary metabolites, both volatile and non-volatile. Plants primed with chemical elicitors are indirectly induced to increase their resistance to herbivore attacks in addition to imparting tolerance or resistance to nearby plants against biotic stresses.

View Article and Find Full Text PDF

Ischemia and pathological angiogenesis in retinal vascular diseases cause serious vision-related problems. However, the transcriptional regulators of vascular repair remain unidentified. Thus, the factors and mechanisms involved in angiogenesis must be elucidated to develop approaches for restoring normal blood vessels.

View Article and Find Full Text PDF

Activation and memory of the heatshock response is mediated by Prion-like domains of sensory HSFs in Arabidopsis.

Mol Plant

January 2025

Leibniz Institut für Gemüse und Zierpflanzenbau (IGZ) e.V., Großbeeren, Germany; Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany. Electronic address:

Plants are able to sense and remember heat stress. An initial priming heat stress enables plants to acclimate so that they are able to survive a subsequent higher temperature. The heatshock transcription factors (HSFs) play a crucial role in this process, but the mechanisms by which plants sense heat stress are not well understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!